A GCSS Boundary-Layer Cloud Model Intercomparison Study Of The First Astex Lagrangian Experiment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

Christopher S. Bretherton, Steven K. Krueger, Matthew C. Wyant, Peter Bechtold, Erik Van Meijgaard, Bjorn Stevens, Joao Teixeira

ABSTRACT

Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations. More... »

PAGES

341-380

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1002005429969

DOI

http://dx.doi.org/10.1023/a:1002005429969

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002695558


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington, Seattle, Washington, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, Washington, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bretherton", 
        "givenName": "Christopher S.", 
        "id": "sg:person.0653252170.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653252170.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "University of Utah, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krueger", 
        "givenName": "Steven K.", 
        "id": "sg:person.01043774257.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043774257.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington, Seattle, Washington, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, Washington, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wyant", 
        "givenName": "Matthew C.", 
        "id": "sg:person.012106154101.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106154101.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Aerologie, Toulouse, France", 
          "id": "http://www.grid.ac/institutes/grid.503278.b", 
          "name": [
            "Laboratoire d'Aerologie, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bechtold", 
        "givenName": "Peter", 
        "id": "sg:person.010630563635.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630563635.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute, De Bilt, Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute, De Bilt, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Meijgaard", 
        "givenName": "Erik", 
        "id": "sg:person.016410121107.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016410121107.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University, Ft. Collins, Colorado, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Colorado State University, Ft. Collins, Colorado, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Bjorn", 
        "id": "sg:person.01067536354.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ECMWF, Reading, England", 
          "id": "http://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, Reading, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teixeira", 
        "givenName": "Joao", 
        "id": "sg:person.016671553143.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016671553143.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/372250a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453632", 
          "https://doi.org/10.1038/372250a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-12", 
    "datePublishedReg": "1999-12-01", 
    "description": "Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1002005429969", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049385", 
        "issn": [
          "0006-8314", 
          "1573-1472"
        ], 
        "name": "Boundary-Layer Meteorology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "keywords": [
      "single-column model", 
      "Lagrangian experiments", 
      "model results", 
      "single-column model results", 
      "two-dimensional eddy-resolving models", 
      "air column", 
      "boundary layer", 
      "liquid water path", 
      "boundary layer evolution", 
      "boundary layer deepens", 
      "model intercomparison study", 
      "observed deepening", 
      "drizzle rates", 
      "radiative parameterizations", 
      "water path", 
      "radiation parameterizations", 
      "layer deepens", 
      "cloud cover", 
      "cloud layer", 
      "cloud evolution", 
      "intercomparison study", 
      "parameterization", 
      "solar radiation", 
      "stratocumulus", 
      "substantial quantitative differences", 
      "modelling workshops", 
      "scale turbulence model", 
      "detailed picture", 
      "evolution", 
      "intercomparison", 
      "column", 
      "boundary layer type", 
      "deepening", 
      "cover", 
      "deepens", 
      "layer", 
      "boundary conditions", 
      "inversion", 
      "cloud", 
      "thinning", 
      "decoupling", 
      "model", 
      "resolution", 
      "important example", 
      "part", 
      "radiation", 
      "environment", 
      "path", 
      "experiments", 
      "conditions", 
      "differences", 
      "results", 
      "transition", 
      "turbulence model", 
      "time", 
      "example", 
      "types", 
      "rate", 
      "quantitative differences", 
      "picture", 
      "study", 
      "days", 
      "factors", 
      "skills", 
      "absorption", 
      "workshop", 
      "dimensionality", 
      "choice", 
      "observations"
    ], 
    "name": "A GCSS Boundary-Layer Cloud Model Intercomparison Study Of The First Astex Lagrangian Experiment", 
    "pagination": "341-380", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002695558"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1002005429969"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1002005429969", 
      "https://app.dimensions.ai/details/publication/pub.1002695558"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_332.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1002005429969"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1002005429969'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1002005429969'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1002005429969'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1002005429969'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      95 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1002005429969 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N5994569eb7a8476da62cab25c8ed8711
4 schema:citation sg:pub.10.1038/372250a0
5 schema:datePublished 1999-12
6 schema:datePublishedReg 1999-12-01
7 schema:description Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N37d08f4900bc4736aa6c567de21bae4a
11 Nc690014fd3e84c508c70fb6d414e3bca
12 sg:journal.1049385
13 schema:keywords Lagrangian experiments
14 absorption
15 air column
16 boundary conditions
17 boundary layer
18 boundary layer deepens
19 boundary layer evolution
20 boundary layer type
21 choice
22 cloud
23 cloud cover
24 cloud evolution
25 cloud layer
26 column
27 conditions
28 cover
29 days
30 decoupling
31 deepening
32 deepens
33 detailed picture
34 differences
35 dimensionality
36 drizzle rates
37 environment
38 evolution
39 example
40 experiments
41 factors
42 important example
43 intercomparison
44 intercomparison study
45 inversion
46 layer
47 layer deepens
48 liquid water path
49 model
50 model intercomparison study
51 model results
52 modelling workshops
53 observations
54 observed deepening
55 parameterization
56 part
57 path
58 picture
59 quantitative differences
60 radiation
61 radiation parameterizations
62 radiative parameterizations
63 rate
64 resolution
65 results
66 scale turbulence model
67 single-column model
68 single-column model results
69 skills
70 solar radiation
71 stratocumulus
72 study
73 substantial quantitative differences
74 thinning
75 time
76 transition
77 turbulence model
78 two-dimensional eddy-resolving models
79 types
80 water path
81 workshop
82 schema:name A GCSS Boundary-Layer Cloud Model Intercomparison Study Of The First Astex Lagrangian Experiment
83 schema:pagination 341-380
84 schema:productId N4d3b49592eb546a38baa50a25fb8d740
85 N62aa7fb93026409298ecb494f7016a7a
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002695558
87 https://doi.org/10.1023/a:1002005429969
88 schema:sdDatePublished 2022-09-02T15:49
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N2ad72fab37834f1ca29614256f0656a2
91 schema:url https://doi.org/10.1023/a:1002005429969
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N2ad72fab37834f1ca29614256f0656a2 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N37d08f4900bc4736aa6c567de21bae4a schema:issueNumber 3
98 rdf:type schema:PublicationIssue
99 N4d3b49592eb546a38baa50a25fb8d740 schema:name doi
100 schema:value 10.1023/a:1002005429969
101 rdf:type schema:PropertyValue
102 N5994569eb7a8476da62cab25c8ed8711 rdf:first sg:person.0653252170.34
103 rdf:rest N8ca7fdb2b1804c0599c08ca8c4612afb
104 N62aa7fb93026409298ecb494f7016a7a schema:name dimensions_id
105 schema:value pub.1002695558
106 rdf:type schema:PropertyValue
107 N62bd2c840d84484293fc38fb7e70e476 rdf:first sg:person.01067536354.83
108 rdf:rest N9c16ed7680b5461888ad27d14bb92d68
109 N7f08bb9d754547aeb12dd6f9b7146a10 rdf:first sg:person.012106154101.15
110 rdf:rest N92c3795da1494c778bf7eea8732e79d1
111 N8ca7fdb2b1804c0599c08ca8c4612afb rdf:first sg:person.01043774257.33
112 rdf:rest N7f08bb9d754547aeb12dd6f9b7146a10
113 N92c3795da1494c778bf7eea8732e79d1 rdf:first sg:person.010630563635.88
114 rdf:rest Nbcdd068b422549a4ab3b2b61df70a7cb
115 N9c16ed7680b5461888ad27d14bb92d68 rdf:first sg:person.016671553143.62
116 rdf:rest rdf:nil
117 Nbcdd068b422549a4ab3b2b61df70a7cb rdf:first sg:person.016410121107.52
118 rdf:rest N62bd2c840d84484293fc38fb7e70e476
119 Nc690014fd3e84c508c70fb6d414e3bca schema:volumeNumber 93
120 rdf:type schema:PublicationVolume
121 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
122 schema:name Earth Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
125 schema:name Atmospheric Sciences
126 rdf:type schema:DefinedTerm
127 sg:journal.1049385 schema:issn 0006-8314
128 1573-1472
129 schema:name Boundary-Layer Meteorology
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.01043774257.33 schema:affiliation grid-institutes:grid.223827.e
133 schema:familyName Krueger
134 schema:givenName Steven K.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043774257.33
136 rdf:type schema:Person
137 sg:person.010630563635.88 schema:affiliation grid-institutes:grid.503278.b
138 schema:familyName Bechtold
139 schema:givenName Peter
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630563635.88
141 rdf:type schema:Person
142 sg:person.01067536354.83 schema:affiliation grid-institutes:grid.47894.36
143 schema:familyName Stevens
144 schema:givenName Bjorn
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83
146 rdf:type schema:Person
147 sg:person.012106154101.15 schema:affiliation grid-institutes:grid.34477.33
148 schema:familyName Wyant
149 schema:givenName Matthew C.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106154101.15
151 rdf:type schema:Person
152 sg:person.016410121107.52 schema:affiliation grid-institutes:grid.8653.8
153 schema:familyName Van Meijgaard
154 schema:givenName Erik
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016410121107.52
156 rdf:type schema:Person
157 sg:person.016671553143.62 schema:affiliation grid-institutes:grid.42781.38
158 schema:familyName Teixeira
159 schema:givenName Joao
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016671553143.62
161 rdf:type schema:Person
162 sg:person.0653252170.34 schema:affiliation grid-institutes:grid.34477.33
163 schema:familyName Bretherton
164 schema:givenName Christopher S.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653252170.34
166 rdf:type schema:Person
167 sg:pub.10.1038/372250a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453632
168 https://doi.org/10.1038/372250a0
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.223827.e schema:alternateName University of Utah, U.S.A.
171 schema:name University of Utah, U.S.A.
172 rdf:type schema:Organization
173 grid-institutes:grid.34477.33 schema:alternateName University of Washington, Seattle, Washington, U.S.A
174 University of Washington, Seattle, Washington, U.S.A.
175 schema:name University of Washington, Seattle, Washington, U.S.A
176 University of Washington, Seattle, Washington, U.S.A.
177 rdf:type schema:Organization
178 grid-institutes:grid.42781.38 schema:alternateName ECMWF, Reading, England
179 schema:name ECMWF, Reading, England
180 rdf:type schema:Organization
181 grid-institutes:grid.47894.36 schema:alternateName Colorado State University, Ft. Collins, Colorado, U.S.A.
182 schema:name Colorado State University, Ft. Collins, Colorado, U.S.A.
183 rdf:type schema:Organization
184 grid-institutes:grid.503278.b schema:alternateName Laboratoire d'Aerologie, Toulouse, France
185 schema:name Laboratoire d'Aerologie, Toulouse, France
186 rdf:type schema:Organization
187 grid-institutes:grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute, De Bilt, Netherlands
188 schema:name Royal Netherlands Meteorological Institute, De Bilt, Netherlands
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...