On Plane Maximal Curves View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-04

AUTHORS

A. Cossidente, J. W. P. Hirschfeld, G. Korchmáros, F. Torres

ABSTRACT

The number N of rational points on an algebraic curve of genus g over a finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{F}}_q $$ \end{document} satisfies the Hasse–Weil bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N \leqslant q + 1 + 1g\sqrt q $$ \end{document}. A curve that attains this bound is called maximal. With \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g_0 = \frac{1}{2}(q - \sqrt q )$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g_1 = \frac{1}{4}(\sqrt q - 1)^2 $$ \end{document}, it is known that maximalcurves have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g = g_0 or g \leqslant {\text{ }}g_1 $$ \end{document}. Maximal curves with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g = g_0 or g_1 $$ \end{document} have been characterized up to isomorphism. A natural genus to be studied is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g_2 = \frac{1}{8}(\sqrt q - 1)(\sqrt q - 3),$$ \end{document} and for this genus there are two non-isomorphic maximal curves known when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt q \equiv 3 (\bmod 4)$$ \end{document}. Here, a maximal curve with genus g2 and a non-singular plane model is characterized as a Fermat curve of degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{2}(\sqrt q + 1)$$ \end{document}. More... »

PAGES

163-181

References to SciGraph publications

  • 1995-12. The genus of maximal function fields over finite fields in MANUSCRIPTA MATHEMATICA
  • 1987-12. Wronskians and linear independence in fields of prime characteristic in MANUSCRIPTA MATHEMATICA
  • 1986-04. Weierstrass points on certain non-classical curves in ARCHIV DER MATHEMATIK
  • 1999-05. On maximal curves in characteristic two in MANUSCRIPTA MATHEMATICA
  • 1996-12. The genus of curves over finite fields with many rational points in MANUSCRIPTA MATHEMATICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1001826520682

    DOI

    http://dx.doi.org/10.1023/a:1001826520682

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052303248


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento de Matematica, Universit\u00e0 della Basilicata, 85100, Potenza, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7367.5", 
              "name": [
                "Dipartimento de Matematica, Universit\u00e0 della Basilicata, 85100, Potenza, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cossidente", 
            "givenName": "A.", 
            "id": "sg:person.011671574055.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011671574055.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, University of Sussex, BN1 9QH, Brighton, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.12082.39", 
              "name": [
                "School of Mathematical Sciences, University of Sussex, BN1 9QH, Brighton, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hirschfeld", 
            "givenName": "J. W. P.", 
            "id": "sg:person.012124570705.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento de Matematica, Universit\u00e0 della Basilicata, 85100, Potenza, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7367.5", 
              "name": [
                "Dipartimento de Matematica, Universit\u00e0 della Basilicata, 85100, Potenza, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Korchm\u00e1ros", 
            "givenName": "G.", 
            "id": "sg:person.015156261743.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156261743.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IMECC-UNICAMP, Cx. P. 6065, 13083-970-SP, Campinas, Brazil", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "IMECC-UNICAMP, Cx. P. 6065, 13083-970-SP, Campinas, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torres", 
            "givenName": "F.", 
            "id": "sg:person.015752377773.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752377773.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002290050161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011718370", 
              "https://doi.org/10.1007/s002290050161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02567508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047567976", 
              "https://doi.org/10.1007/bf02567508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01200462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007240893", 
              "https://doi.org/10.1007/bf01200462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01170848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046983517", 
              "https://doi.org/10.1007/bf01170848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02567990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041029560", 
              "https://doi.org/10.1007/bf02567990"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-04", 
        "datePublishedReg": "2000-04-01", 
        "description": "The number N of rational points on an algebraic curve of genus g over a finite field \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\mathbb{F}}_q $$\n\\end{document} satisfies the Hasse\u2013Weil bound \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$N \\leqslant q + 1 + 1g\\sqrt q $$\n\\end{document}. A curve that attains this bound is called maximal. With \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$g_0 = \\frac{1}{2}(q - \\sqrt q )$$\n\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$g_1 = \\frac{1}{4}(\\sqrt q - 1)^2 $$\n\\end{document}, it is known that maximalcurves have \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$g = g_0 or g \\leqslant {\\text{ }}g_1 $$\n\\end{document}. Maximal curves with \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$g = g_0 or g_1 $$\n\\end{document} have been characterized up to isomorphism. A natural genus to be studied is \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$g_2 = \\frac{1}{8}(\\sqrt q - 1)(\\sqrt q - 3),$$\n\\end{document} and for this genus there are two non-isomorphic maximal curves known when \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt q \\equiv 3 (\\bmod 4)$$\n\\end{document}. Here, a maximal curve with genus g2 and a non-singular plane model is characterized as a Fermat curve of degree \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\frac{1}{2}(\\sqrt q + 1)$$\n\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1001826520682", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1138208", 
            "issn": [
              "0010-437X", 
              "1570-5846"
            ], 
            "name": "Compositio Mathematica", 
            "publisher": "Cambridge University Press (CUP)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "121"
          }
        ], 
        "keywords": [
          "maximal curves", 
          "Hasse\u2013Weil", 
          "algebraic curves", 
          "rational points", 
          "Fermat curves", 
          "finite field", 
          "genus g2", 
          "number n", 
          "plane model", 
          "isomorphism", 
          "natural genus", 
          "curves", 
          "model", 
          "point", 
          "field", 
          "degree", 
          "G2", 
          "genus", 
          "maximalcurves", 
          "non-isomorphic maximal curves", 
          "non-singular plane model", 
          "Plane Maximal Curves"
        ], 
        "name": "On Plane Maximal Curves", 
        "pagination": "163-181", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052303248"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1001826520682"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1001826520682", 
          "https://app.dimensions.ai/details/publication/pub.1052303248"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_330.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1001826520682"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1001826520682'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1001826520682'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1001826520682'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1001826520682'


     

    This table displays all metadata directly associated to this object as RDF triples.

    127 TRIPLES      22 PREDICATES      53 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1001826520682 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf60aae1dc68f4fdf8f8ba196567951f2
    4 schema:citation sg:pub.10.1007/bf01170848
    5 sg:pub.10.1007/bf01200462
    6 sg:pub.10.1007/bf02567508
    7 sg:pub.10.1007/bf02567990
    8 sg:pub.10.1007/s002290050161
    9 schema:datePublished 2000-04
    10 schema:datePublishedReg 2000-04-01
    11 schema:description The number N of rational points on an algebraic curve of genus g over a finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{F}}_q $$ \end{document} satisfies the Hasse–Weil bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N \leqslant q + 1 + 1g\sqrt q $$ \end{document}. A curve that attains this bound is called maximal. With \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g_0 = \frac{1}{2}(q - \sqrt q )$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g_1 = \frac{1}{4}(\sqrt q - 1)^2 $$ \end{document}, it is known that maximalcurves have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g = g_0 or g \leqslant {\text{ }}g_1 $$ \end{document}. Maximal curves with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g = g_0 or g_1 $$ \end{document} have been characterized up to isomorphism. A natural genus to be studied is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g_2 = \frac{1}{8}(\sqrt q - 1)(\sqrt q - 3),$$ \end{document} and for this genus there are two non-isomorphic maximal curves known when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt q \equiv 3 (\bmod 4)$$ \end{document}. Here, a maximal curve with genus g2 and a non-singular plane model is characterized as a Fermat curve of degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{2}(\sqrt q + 1)$$ \end{document}.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N025d68250ca9499398a78243d6f9ec28
    16 N68b2f6ff4ed849098363b1094f35cffb
    17 sg:journal.1138208
    18 schema:keywords Fermat curves
    19 G2
    20 Hasse–Weil
    21 Plane Maximal Curves
    22 algebraic curves
    23 curves
    24 degree
    25 field
    26 finite field
    27 genus
    28 genus g2
    29 isomorphism
    30 maximal curves
    31 maximalcurves
    32 model
    33 natural genus
    34 non-isomorphic maximal curves
    35 non-singular plane model
    36 number n
    37 plane model
    38 point
    39 rational points
    40 schema:name On Plane Maximal Curves
    41 schema:pagination 163-181
    42 schema:productId N407793e3ef54439095e4873eab3a4c8c
    43 Nd48c4bd33faa48bf877bfc31eca101ad
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052303248
    45 https://doi.org/10.1023/a:1001826520682
    46 schema:sdDatePublished 2022-01-01T18:10
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N412a3a5d500c4da799a8f9356962e06c
    49 schema:url https://doi.org/10.1023/a:1001826520682
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N025d68250ca9499398a78243d6f9ec28 schema:volumeNumber 121
    54 rdf:type schema:PublicationVolume
    55 N407793e3ef54439095e4873eab3a4c8c schema:name doi
    56 schema:value 10.1023/a:1001826520682
    57 rdf:type schema:PropertyValue
    58 N412a3a5d500c4da799a8f9356962e06c schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N68b2f6ff4ed849098363b1094f35cffb schema:issueNumber 2
    61 rdf:type schema:PublicationIssue
    62 N73a7ef9acdbf4789a56fad5c9fc06414 rdf:first sg:person.015156261743.39
    63 rdf:rest Na39a8757162a48c1bb23534605bd0662
    64 Na39a8757162a48c1bb23534605bd0662 rdf:first sg:person.015752377773.08
    65 rdf:rest rdf:nil
    66 Nd48c4bd33faa48bf877bfc31eca101ad schema:name dimensions_id
    67 schema:value pub.1052303248
    68 rdf:type schema:PropertyValue
    69 Nec503a4a4ff94a9eae8b1db96aa9a911 rdf:first sg:person.012124570705.64
    70 rdf:rest N73a7ef9acdbf4789a56fad5c9fc06414
    71 Nf60aae1dc68f4fdf8f8ba196567951f2 rdf:first sg:person.011671574055.99
    72 rdf:rest Nec503a4a4ff94a9eae8b1db96aa9a911
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1138208 schema:issn 0010-437X
    80 1570-5846
    81 schema:name Compositio Mathematica
    82 schema:publisher Cambridge University Press (CUP)
    83 rdf:type schema:Periodical
    84 sg:person.011671574055.99 schema:affiliation grid-institutes:grid.7367.5
    85 schema:familyName Cossidente
    86 schema:givenName A.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011671574055.99
    88 rdf:type schema:Person
    89 sg:person.012124570705.64 schema:affiliation grid-institutes:grid.12082.39
    90 schema:familyName Hirschfeld
    91 schema:givenName J. W. P.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64
    93 rdf:type schema:Person
    94 sg:person.015156261743.39 schema:affiliation grid-institutes:grid.7367.5
    95 schema:familyName Korchmáros
    96 schema:givenName G.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156261743.39
    98 rdf:type schema:Person
    99 sg:person.015752377773.08 schema:affiliation grid-institutes:None
    100 schema:familyName Torres
    101 schema:givenName F.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752377773.08
    103 rdf:type schema:Person
    104 sg:pub.10.1007/bf01170848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046983517
    105 https://doi.org/10.1007/bf01170848
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01200462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007240893
    108 https://doi.org/10.1007/bf01200462
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf02567508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047567976
    111 https://doi.org/10.1007/bf02567508
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf02567990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041029560
    114 https://doi.org/10.1007/bf02567990
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s002290050161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011718370
    117 https://doi.org/10.1007/s002290050161
    118 rdf:type schema:CreativeWork
    119 grid-institutes:None schema:alternateName IMECC-UNICAMP, Cx. P. 6065, 13083-970-SP, Campinas, Brazil
    120 schema:name IMECC-UNICAMP, Cx. P. 6065, 13083-970-SP, Campinas, Brazil
    121 rdf:type schema:Organization
    122 grid-institutes:grid.12082.39 schema:alternateName School of Mathematical Sciences, University of Sussex, BN1 9QH, Brighton, United Kingdom
    123 schema:name School of Mathematical Sciences, University of Sussex, BN1 9QH, Brighton, United Kingdom
    124 rdf:type schema:Organization
    125 grid-institutes:grid.7367.5 schema:alternateName Dipartimento de Matematica, Università della Basilicata, 85100, Potenza, Italy
    126 schema:name Dipartimento de Matematica, Università della Basilicata, 85100, Potenza, Italy
    127 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...