The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-05

AUTHORS

Abdelmadjid Atrih, Simon J. Foster

ABSTRACT

Dormant, bacterial endospores are the most resistant living structures known. The spore cell wall (cortex) maintains dormancy, core dehydration, and heat resistance. The cortex peptidoglycan has a unique, spore specific structure that enables it to fulfill its role. The cross-linking index of spore cortex peptidoglycan is very low, occurring at only 2.9% of the muramic acid residues compared to 33% in vegetative cells. The level of cross-linking of the cortex may be important in maintaining spore dormancy and heat resistance. Approximately 50% of the muramic acid residues in spore cortex are substituted with muramic delta-lactam. This modification is spore specific and is the major characteristic feature of the cortex. The muramic delta-lactam has no apparent role in establishing core dehydration, maintaining dormancy or heat resistance. However, the muramic delta-lactam residues are necessary for spore cortex hydrolysis during germination. They constitute part of the substrate recognition profile of the germination specific lytic enzymes (GSLEs) which are responsible for cortex hydrolysis. Germination results in loss of dormant spore properties and hydrolysis of the cortex is essential for later germination events and outgrowth. Application of muropeptide analysis to determine peptidoglycan structural dynamics during germination has revealed an unexpected degree of complexity in peptidoglycan hydrolysis. At least three hydrolytic activities, an N-acetyl glucosaminidase, a lytic transglycosylase and a possible amidase, are involved. A non-hydrolytic activity, likely to be an epimerase of muramic acid also occurs early during germination. The lytic transglycosylase generates anhydro-muropeptides which are released during germination and may be recycled during outgrowth to form part of the new vegetative cell wall. More... »

PAGES

299-307

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1001800507443

DOI

http://dx.doi.org/10.1023/a:1001800507443

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033375716

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10510717


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacillus subtilis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hot Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptidoglycan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spores, Bacterial", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atrih", 
        "givenName": "Abdelmadjid", 
        "id": "sg:person.0770564324.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770564324.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foster", 
        "givenName": "Simon J.", 
        "id": "sg:person.0744375330.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744375330.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0006-291x(63)90039-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002533803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2672.1994.tb04357.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002863981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2672.1994.tb04359.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003103609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2672.1970.tb05232.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005309743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2911(08)60056-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012060253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2672.1994.tb04354.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012537871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1995.tb02268.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013020679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1988.tb00083.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017579443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81928-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019414545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1271/bbb.59.514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022932147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.64.2.528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024194180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1348-0421.1996.tb03323.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027357699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/36786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031054310", 
          "https://doi.org/10.1038/36786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/36786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031054310", 
          "https://doi.org/10.1038/36786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.26.15405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031402519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2420573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031869436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2420573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031869436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1990.tb02023.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049229258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1348-0421.1985.tb00873.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052999961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00758a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055187614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00800a001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055188861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-140-6-1403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060369093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/13500872-141-10-2643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060380651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/13500872-145-5-1033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060381393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.167.3.759-765.1986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062715133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.177.16.4721-4729.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062724037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.177.19.5582-5589.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062724167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.178.17.5330-5332.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062725174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.178.20.6059-6063.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062725322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.178.21.6173-6183.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062725342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.178.22.6451-6458.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062725385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.179.10.3181-3187.1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062725876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080284076", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080718768", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1994.tb06792.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082567694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082639809", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082817282", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083202276", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083232650", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083311001", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-05", 
    "datePublishedReg": "1999-05-01", 
    "description": "Dormant, bacterial endospores are the most resistant living structures known. The spore cell wall (cortex) maintains dormancy, core dehydration, and heat resistance. The cortex peptidoglycan has a unique, spore specific structure that enables it to fulfill its role. The cross-linking index of spore cortex peptidoglycan is very low, occurring at only 2.9% of the muramic acid residues compared to 33% in vegetative cells. The level of cross-linking of the cortex may be important in maintaining spore dormancy and heat resistance. Approximately 50% of the muramic acid residues in spore cortex are substituted with muramic delta-lactam. This modification is spore specific and is the major characteristic feature of the cortex. The muramic delta-lactam has no apparent role in establishing core dehydration, maintaining dormancy or heat resistance. However, the muramic delta-lactam residues are necessary for spore cortex hydrolysis during germination. They constitute part of the substrate recognition profile of the germination specific lytic enzymes (GSLEs) which are responsible for cortex hydrolysis. Germination results in loss of dormant spore properties and hydrolysis of the cortex is essential for later germination events and outgrowth. Application of muropeptide analysis to determine peptidoglycan structural dynamics during germination has revealed an unexpected degree of complexity in peptidoglycan hydrolysis. At least three hydrolytic activities, an N-acetyl glucosaminidase, a lytic transglycosylase and a possible amidase, are involved. A non-hydrolytic activity, likely to be an epimerase of muramic acid also occurs early during germination. The lytic transglycosylase generates anhydro-muropeptides which are released during germination and may be recycled during outgrowth to form part of the new vegetative cell wall.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1001800507443", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017348", 
        "issn": [
          "0003-6072", 
          "1572-9699"
        ], 
        "name": "Antonie van Leeuwenhoek", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination", 
    "pagination": "299-307", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9efed31adb45b2bf656ffddecf078926889c2e71c2171f785f9e0c5b0bf71f15"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10510717"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0372625"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1001800507443"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033375716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1001800507443", 
      "https://app.dimensions.ai/details/publication/pub.1033375716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1001800507443"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1001800507443'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1001800507443'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1001800507443'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1001800507443'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      71 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1001800507443 schema:about N095617d23587419ab7b0f948cda0709e
2 N2de9edfeb11240c6bad240b0545f3704
3 N49f0600dfabe4e1ba5538eb45d7d3c6c
4 N9739d4e6969c47d3812ac0fe26d6aa78
5 anzsrc-for:06
6 anzsrc-for:0601
7 schema:author Nbc2e9036836640fcbdb6cde0a06a81eb
8 schema:citation sg:pub.10.1038/36786
9 https://app.dimensions.ai/details/publication/pub.1080284076
10 https://app.dimensions.ai/details/publication/pub.1080718768
11 https://app.dimensions.ai/details/publication/pub.1082639809
12 https://app.dimensions.ai/details/publication/pub.1082817282
13 https://app.dimensions.ai/details/publication/pub.1083202276
14 https://app.dimensions.ai/details/publication/pub.1083232650
15 https://app.dimensions.ai/details/publication/pub.1083311001
16 https://doi.org/10.1002/j.1460-2075.1994.tb06792.x
17 https://doi.org/10.1016/0006-291x(63)90039-1
18 https://doi.org/10.1016/s0065-2911(08)60056-9
19 https://doi.org/10.1016/s0092-8674(00)81928-5
20 https://doi.org/10.1021/bi00758a010
21 https://doi.org/10.1021/bi00800a001
22 https://doi.org/10.1042/bj2420573
23 https://doi.org/10.1073/pnas.64.2.528
24 https://doi.org/10.1073/pnas.93.26.15405
25 https://doi.org/10.1099/00221287-140-6-1403
26 https://doi.org/10.1099/13500872-141-10-2643
27 https://doi.org/10.1099/13500872-145-5-1033
28 https://doi.org/10.1111/j.1348-0421.1985.tb00873.x
29 https://doi.org/10.1111/j.1348-0421.1996.tb03323.x
30 https://doi.org/10.1111/j.1365-2672.1970.tb05232.x
31 https://doi.org/10.1111/j.1365-2672.1994.tb04354.x
32 https://doi.org/10.1111/j.1365-2672.1994.tb04357.x
33 https://doi.org/10.1111/j.1365-2672.1994.tb04359.x
34 https://doi.org/10.1111/j.1365-2958.1988.tb00083.x
35 https://doi.org/10.1111/j.1365-2958.1990.tb02023.x
36 https://doi.org/10.1111/j.1365-2958.1995.tb02268.x
37 https://doi.org/10.1128/jb.167.3.759-765.1986
38 https://doi.org/10.1128/jb.177.16.4721-4729.1995
39 https://doi.org/10.1128/jb.177.19.5582-5589.1995
40 https://doi.org/10.1128/jb.178.17.5330-5332.1996
41 https://doi.org/10.1128/jb.178.20.6059-6063.1996
42 https://doi.org/10.1128/jb.178.21.6173-6183.1996
43 https://doi.org/10.1128/jb.178.22.6451-6458.1996
44 https://doi.org/10.1128/jb.179.10.3181-3187.1997
45 https://doi.org/10.1271/bbb.59.514
46 schema:datePublished 1999-05
47 schema:datePublishedReg 1999-05-01
48 schema:description Dormant, bacterial endospores are the most resistant living structures known. The spore cell wall (cortex) maintains dormancy, core dehydration, and heat resistance. The cortex peptidoglycan has a unique, spore specific structure that enables it to fulfill its role. The cross-linking index of spore cortex peptidoglycan is very low, occurring at only 2.9% of the muramic acid residues compared to 33% in vegetative cells. The level of cross-linking of the cortex may be important in maintaining spore dormancy and heat resistance. Approximately 50% of the muramic acid residues in spore cortex are substituted with muramic delta-lactam. This modification is spore specific and is the major characteristic feature of the cortex. The muramic delta-lactam has no apparent role in establishing core dehydration, maintaining dormancy or heat resistance. However, the muramic delta-lactam residues are necessary for spore cortex hydrolysis during germination. They constitute part of the substrate recognition profile of the germination specific lytic enzymes (GSLEs) which are responsible for cortex hydrolysis. Germination results in loss of dormant spore properties and hydrolysis of the cortex is essential for later germination events and outgrowth. Application of muropeptide analysis to determine peptidoglycan structural dynamics during germination has revealed an unexpected degree of complexity in peptidoglycan hydrolysis. At least three hydrolytic activities, an N-acetyl glucosaminidase, a lytic transglycosylase and a possible amidase, are involved. A non-hydrolytic activity, likely to be an epimerase of muramic acid also occurs early during germination. The lytic transglycosylase generates anhydro-muropeptides which are released during germination and may be recycled during outgrowth to form part of the new vegetative cell wall.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N093c5f3dc29646f6a06123e5fcafcbe0
53 N2040025697c249d1bc6736e86a7cee2a
54 sg:journal.1017348
55 schema:name The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination
56 schema:pagination 299-307
57 schema:productId N0b40615517d24ac5b958d9e32e2215ed
58 N5ecc1983d7754e85bca2b648e2e8f92c
59 N8ace43579cf84b17adbe31525aee6941
60 N9c5ab713851f46a0818fa42907298026
61 Naa7641ba4866433da0e527152d83b7ae
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033375716
63 https://doi.org/10.1023/a:1001800507443
64 schema:sdDatePublished 2019-04-10T23:21
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N3f9146755abd4748a564142351159ece
67 schema:url http://link.springer.com/10.1023/A:1001800507443
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N093c5f3dc29646f6a06123e5fcafcbe0 schema:volumeNumber 75
72 rdf:type schema:PublicationVolume
73 N095617d23587419ab7b0f948cda0709e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Bacillus subtilis
75 rdf:type schema:DefinedTerm
76 N0b40615517d24ac5b958d9e32e2215ed schema:name dimensions_id
77 schema:value pub.1033375716
78 rdf:type schema:PropertyValue
79 N2040025697c249d1bc6736e86a7cee2a schema:issueNumber 4
80 rdf:type schema:PublicationIssue
81 N2de9edfeb11240c6bad240b0545f3704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Peptidoglycan
83 rdf:type schema:DefinedTerm
84 N3f9146755abd4748a564142351159ece schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N49f0600dfabe4e1ba5538eb45d7d3c6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Hot Temperature
88 rdf:type schema:DefinedTerm
89 N5ecc1983d7754e85bca2b648e2e8f92c schema:name nlm_unique_id
90 schema:value 0372625
91 rdf:type schema:PropertyValue
92 N8ace43579cf84b17adbe31525aee6941 schema:name doi
93 schema:value 10.1023/a:1001800507443
94 rdf:type schema:PropertyValue
95 N9739d4e6969c47d3812ac0fe26d6aa78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Spores, Bacterial
97 rdf:type schema:DefinedTerm
98 N9c5ab713851f46a0818fa42907298026 schema:name pubmed_id
99 schema:value 10510717
100 rdf:type schema:PropertyValue
101 Naa7641ba4866433da0e527152d83b7ae schema:name readcube_id
102 schema:value 9efed31adb45b2bf656ffddecf078926889c2e71c2171f785f9e0c5b0bf71f15
103 rdf:type schema:PropertyValue
104 Nb90d98364b8d45fc92f95380cc04b67e rdf:first sg:person.0744375330.02
105 rdf:rest rdf:nil
106 Nbc2e9036836640fcbdb6cde0a06a81eb rdf:first sg:person.0770564324.95
107 rdf:rest Nb90d98364b8d45fc92f95380cc04b67e
108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biological Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biochemistry and Cell Biology
113 rdf:type schema:DefinedTerm
114 sg:journal.1017348 schema:issn 0003-6072
115 1572-9699
116 schema:name Antonie van Leeuwenhoek
117 rdf:type schema:Periodical
118 sg:person.0744375330.02 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
119 schema:familyName Foster
120 schema:givenName Simon J.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744375330.02
122 rdf:type schema:Person
123 sg:person.0770564324.95 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
124 schema:familyName Atrih
125 schema:givenName Abdelmadjid
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770564324.95
127 rdf:type schema:Person
128 sg:pub.10.1038/36786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031054310
129 https://doi.org/10.1038/36786
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1080284076 schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1080718768 schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1082639809 schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1082817282 schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1083202276 schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1083232650 schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1083311001 schema:CreativeWork
138 https://doi.org/10.1002/j.1460-2075.1994.tb06792.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1082567694
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0006-291x(63)90039-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002533803
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0065-2911(08)60056-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012060253
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0092-8674(00)81928-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019414545
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1021/bi00758a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055187614
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/bi00800a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055188861
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1042/bj2420573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031869436
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1073/pnas.64.2.528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024194180
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1073/pnas.93.26.15405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031402519
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1099/00221287-140-6-1403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060369093
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1099/13500872-141-10-2643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060380651
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1099/13500872-145-5-1033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060381393
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/j.1348-0421.1985.tb00873.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052999961
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1348-0421.1996.tb03323.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027357699
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1365-2672.1970.tb05232.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005309743
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1111/j.1365-2672.1994.tb04354.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012537871
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1111/j.1365-2672.1994.tb04357.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002863981
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1111/j.1365-2672.1994.tb04359.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003103609
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1111/j.1365-2958.1988.tb00083.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017579443
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/j.1365-2958.1990.tb02023.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049229258
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1365-2958.1995.tb02268.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013020679
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1128/jb.167.3.759-765.1986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062715133
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1128/jb.177.16.4721-4729.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062724037
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1128/jb.177.19.5582-5589.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062724167
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1128/jb.178.17.5330-5332.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062725174
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1128/jb.178.20.6059-6063.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062725322
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1128/jb.178.21.6173-6183.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062725342
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1128/jb.178.22.6451-6458.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062725385
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1128/jb.179.10.3181-3187.1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062725876
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1271/bbb.59.514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022932147
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
199 schema:name Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, United Kingdom
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...