Current topics in signal transduction in bacteria View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-11

AUTHORS

Klaas J. Hellingwerf, Wim C. Crielaard, M. Joost Teixeira de Mattos, Wouter D. Hoff, Remco Kort, Daniel T. Verhamme, Claudio Avignone-Rossa

ABSTRACT

Among the signal transfer systems in bacteria two types predominate: two-component regulatory systems and quorum sensing systems. Both types of system can mediate signal transfer across the bacterial cell envelope; however, the signalling molecule typically is not taken up into the cells in the former type of system, whereas it usually is in the latter. The Two-component systems include the recently described (eukaryotic) phosphorelay systems; quorum sensing systems can be based upon autoinducers of the N-acylated homoserine lactones, and on autoinducers of a peptidic nature. A single bacterial cell contains many signalling modules that primarily operate in parallel. This may give rise to neural-network behaviour. Recently, however, for both types of basic signal transfer modules, it has been demonstrated that they also can be organised in series (i.e. in a hierarchical order). Besides their hierarchical position in the signal transduction network of the cell, the spatial distribution of individual signalling modules may also be an important factor in their efficiency in signal transfer. Many challenges lie hidden in future work to understand these signal transfer processes in more detail. These are discussed here, with emphasis on the mutual interactions between different signal transfer processes. Successful contributions to this work will require rigorous mathematical modelling of the performance of signal transduction components, and -networks, as well as studies on light-sensing signal transduction systems, because of the unsurpassed time resolution obtainable in those latter systems, the opportunity to apply repeated reproducible stimuli, etc. The increased understanding of bacterial behaviour that already has resulted – and may further result – from these studies, can be used to fine-tune the beneficial activities of bacteria and/or more efficiently inhibit their deleterious ones. More... »

PAGES

211-227

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1001738419877

DOI

http://dx.doi.org/10.1023/a:1001738419877

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027932498

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10081581


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homoserine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pheromones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Cell Surface", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellingwerf", 
        "givenName": "Klaas J.", 
        "id": "sg:person.064413675.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.064413675.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crielaard", 
        "givenName": "Wim C.", 
        "id": "sg:person.01077645070.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077645070.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teixeira de Mattos", 
        "givenName": "M. Joost", 
        "id": "sg:person.01206611064.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206611064.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Oklahoma State University, Stillwater, USA", 
          "id": "http://www.grid.ac/institutes/grid.65519.3e", 
          "name": [
            "Department of Physics, Oklahoma State University, Stillwater, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoff", 
        "givenName": "Wouter D.", 
        "id": "sg:person.01100360046.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100360046.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kort", 
        "givenName": "Remco", 
        "id": "sg:person.0700176025.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700176025.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verhamme", 
        "givenName": "Daniel T.", 
        "id": "sg:person.01310346747.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310346747.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Avignone-Rossa", 
        "givenName": "Claudio", 
        "id": "sg:person.01057315057.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057315057.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002030050451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021555430", 
          "https://doi.org/10.1007/s002030050451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/362446a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034459454", 
          "https://doi.org/10.1038/362446a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/337745a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050539488", 
          "https://doi.org/10.1038/337745a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/362448a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026984769", 
          "https://doi.org/10.1038/362448a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350170a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028882114", 
          "https://doi.org/10.1038/350170a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00805841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027944828", 
          "https://doi.org/10.1007/bf00805841"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-11", 
    "datePublishedReg": "1998-11-01", 
    "description": "Among the signal transfer systems in bacteria two types predominate: two-component regulatory systems and quorum sensing systems. Both types of system can mediate signal transfer across the bacterial cell envelope; however, the signalling molecule typically is not taken up into the cells in the former type of system, whereas it usually is in the latter. The Two-component systems include the recently described (eukaryotic) phosphorelay systems; quorum sensing systems can be based upon autoinducers of the N-acylated homoserine lactones, and on autoinducers of a peptidic nature. A single bacterial cell contains many signalling modules that primarily operate in parallel. This may give rise to neural-network behaviour. Recently, however, for both types of basic signal transfer modules, it has been demonstrated that they also can be organised in series (i.e. in a hierarchical order). Besides their hierarchical position in the signal transduction network of the cell, the spatial distribution of individual signalling modules may also be an important factor in their efficiency in signal transfer. Many challenges lie hidden in future work to understand these signal transfer processes in more detail. These are discussed here, with emphasis on the mutual interactions between different signal transfer processes. Successful contributions to this work will require rigorous mathematical modelling of the performance of signal transduction components, and -networks, as well as studies on light-sensing signal transduction systems, because of the unsurpassed time resolution obtainable in those latter systems, the opportunity to apply repeated reproducible stimuli, etc. The increased understanding of bacterial behaviour that already has resulted \u2013 and may further result \u2013 from these studies, can be used to fine-tune the beneficial activities of bacteria and/or more efficiently inhibit their deleterious ones.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1001738419877", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017348", 
        "issn": [
          "0003-6072", 
          "1572-9699"
        ], 
        "name": "Antonie van Leeuwenhoek", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "keywords": [
      "quorum sensing system", 
      "two-component regulatory system", 
      "signal transfer process", 
      "signal transduction components", 
      "signal transduction networks", 
      "signal transduction system", 
      "bacterial cell envelope", 
      "two-component system", 
      "single bacterial cells", 
      "phosphorelay system", 
      "transduction networks", 
      "signaling modules", 
      "transduction components", 
      "signal transduction", 
      "homoserine lactone", 
      "cell envelope", 
      "transduction system", 
      "signal transfer", 
      "bacterial behavior", 
      "signal transfer system", 
      "bacterial cells", 
      "deleterious ones", 
      "regulatory system", 
      "autoinducers", 
      "rigorous mathematical modelling", 
      "bacteria", 
      "cells", 
      "beneficial activities", 
      "transduction", 
      "peptidic nature", 
      "reproducible stimulus", 
      "successful contribution", 
      "time resolution obtainable", 
      "spatial distribution", 
      "lactone", 
      "molecules", 
      "types", 
      "important factor", 
      "envelope", 
      "more detail", 
      "interaction", 
      "activity", 
      "sensing system", 
      "mutual interaction", 
      "understanding", 
      "process", 
      "transfer", 
      "current topics", 
      "transfer system", 
      "two types", 
      "module", 
      "components", 
      "study", 
      "future work", 
      "stimuli", 
      "factors", 
      "mathematical modelling", 
      "system", 
      "former type", 
      "latter system", 
      "distribution", 
      "network", 
      "hierarchical position", 
      "parallel", 
      "neural network behavior", 
      "contribution", 
      "position", 
      "nature", 
      "opportunities", 
      "work", 
      "detail", 
      "behavior", 
      "emphasis", 
      "efficiency", 
      "one", 
      "challenges", 
      "resolution obtainable", 
      "series", 
      "modelling", 
      "transfer module", 
      "transfer process", 
      "topic", 
      "type of system", 
      "obtainable", 
      "performance"
    ], 
    "name": "Current topics in signal transduction in bacteria", 
    "pagination": "211-227", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027932498"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1001738419877"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10081581"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1001738419877", 
      "https://app.dimensions.ai/details/publication/pub.1027932498"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_271.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1001738419877"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1001738419877'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1001738419877'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1001738419877'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1001738419877'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      123 URIs      109 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1001738419877 schema:about N3f41accc55694f1280bda92350f27e14
2 N83aa601f00744a89865a14767710d33b
3 N9108125e9c0947ada68485935792e252
4 Na17a40ce44034415b56d1867fd388a99
5 Nab766702f6c44774b0b455131ed81a8c
6 Nd134096c81144598b2e07f8445c8c132
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author N3d32ce4ac4e3460393433ad2b0352564
10 schema:citation sg:pub.10.1007/bf00805841
11 sg:pub.10.1007/s002030050451
12 sg:pub.10.1038/337745a0
13 sg:pub.10.1038/350170a0
14 sg:pub.10.1038/362446a0
15 sg:pub.10.1038/362448a0
16 schema:datePublished 1998-11
17 schema:datePublishedReg 1998-11-01
18 schema:description Among the signal transfer systems in bacteria two types predominate: two-component regulatory systems and quorum sensing systems. Both types of system can mediate signal transfer across the bacterial cell envelope; however, the signalling molecule typically is not taken up into the cells in the former type of system, whereas it usually is in the latter. The Two-component systems include the recently described (eukaryotic) phosphorelay systems; quorum sensing systems can be based upon autoinducers of the N-acylated homoserine lactones, and on autoinducers of a peptidic nature. A single bacterial cell contains many signalling modules that primarily operate in parallel. This may give rise to neural-network behaviour. Recently, however, for both types of basic signal transfer modules, it has been demonstrated that they also can be organised in series (i.e. in a hierarchical order). Besides their hierarchical position in the signal transduction network of the cell, the spatial distribution of individual signalling modules may also be an important factor in their efficiency in signal transfer. Many challenges lie hidden in future work to understand these signal transfer processes in more detail. These are discussed here, with emphasis on the mutual interactions between different signal transfer processes. Successful contributions to this work will require rigorous mathematical modelling of the performance of signal transduction components, and -networks, as well as studies on light-sensing signal transduction systems, because of the unsurpassed time resolution obtainable in those latter systems, the opportunity to apply repeated reproducible stimuli, etc. The increased understanding of bacterial behaviour that already has resulted – and may further result – from these studies, can be used to fine-tune the beneficial activities of bacteria and/or more efficiently inhibit their deleterious ones.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N7d3343dfd8494403ac13b4e2a60d052b
22 Nf982ca7c170d40f4a5b90685202d9e4a
23 sg:journal.1017348
24 schema:keywords activity
25 autoinducers
26 bacteria
27 bacterial behavior
28 bacterial cell envelope
29 bacterial cells
30 behavior
31 beneficial activities
32 cell envelope
33 cells
34 challenges
35 components
36 contribution
37 current topics
38 deleterious ones
39 detail
40 distribution
41 efficiency
42 emphasis
43 envelope
44 factors
45 former type
46 future work
47 hierarchical position
48 homoserine lactone
49 important factor
50 interaction
51 lactone
52 latter system
53 mathematical modelling
54 modelling
55 module
56 molecules
57 more detail
58 mutual interaction
59 nature
60 network
61 neural network behavior
62 obtainable
63 one
64 opportunities
65 parallel
66 peptidic nature
67 performance
68 phosphorelay system
69 position
70 process
71 quorum sensing system
72 regulatory system
73 reproducible stimulus
74 resolution obtainable
75 rigorous mathematical modelling
76 sensing system
77 series
78 signal transduction
79 signal transduction components
80 signal transduction networks
81 signal transduction system
82 signal transfer
83 signal transfer process
84 signal transfer system
85 signaling modules
86 single bacterial cells
87 spatial distribution
88 stimuli
89 study
90 successful contribution
91 system
92 time resolution obtainable
93 topic
94 transduction
95 transduction components
96 transduction networks
97 transduction system
98 transfer
99 transfer module
100 transfer process
101 transfer system
102 two types
103 two-component regulatory system
104 two-component system
105 type of system
106 types
107 understanding
108 work
109 schema:name Current topics in signal transduction in bacteria
110 schema:pagination 211-227
111 schema:productId Nab44f754d8d74df7b893e53b6cae1556
112 Ne4898d294fd74d288ff2f05b1724fa15
113 Nfb6126fdd5a344f2b4986122aebc90fe
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027932498
115 https://doi.org/10.1023/a:1001738419877
116 schema:sdDatePublished 2022-12-01T06:21
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher N2cf56553c3f1470d9de7fc89bf44ada6
119 schema:url https://doi.org/10.1023/a:1001738419877
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N0be315b8204b4882a10d2036e5f3d3fa rdf:first sg:person.01206611064.04
124 rdf:rest N61aa52ad8bc247e8a9f60dd4510b3ebb
125 N2cf56553c3f1470d9de7fc89bf44ada6 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 N3d32ce4ac4e3460393433ad2b0352564 rdf:first sg:person.064413675.17
128 rdf:rest N6bebfc64d29a41eb886739cbe1b69cb0
129 N3f41accc55694f1280bda92350f27e14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Homoserine
131 rdf:type schema:DefinedTerm
132 N61aa52ad8bc247e8a9f60dd4510b3ebb rdf:first sg:person.01100360046.86
133 rdf:rest N89c3483ed2854b4b86e301835bf0bceb
134 N6bebfc64d29a41eb886739cbe1b69cb0 rdf:first sg:person.01077645070.93
135 rdf:rest N0be315b8204b4882a10d2036e5f3d3fa
136 N7d3343dfd8494403ac13b4e2a60d052b schema:volumeNumber 74
137 rdf:type schema:PublicationVolume
138 N83aa601f00744a89865a14767710d33b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Pheromones
140 rdf:type schema:DefinedTerm
141 N89c3483ed2854b4b86e301835bf0bceb rdf:first sg:person.0700176025.79
142 rdf:rest Nb7597769d1b641188ef7faa643d4744d
143 N9108125e9c0947ada68485935792e252 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Receptors, Cell Surface
145 rdf:type schema:DefinedTerm
146 Na17a40ce44034415b56d1867fd388a99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Bacteria
148 rdf:type schema:DefinedTerm
149 Nab44f754d8d74df7b893e53b6cae1556 schema:name dimensions_id
150 schema:value pub.1027932498
151 rdf:type schema:PropertyValue
152 Nab766702f6c44774b0b455131ed81a8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Signal Transduction
154 rdf:type schema:DefinedTerm
155 Nb7597769d1b641188ef7faa643d4744d rdf:first sg:person.01310346747.96
156 rdf:rest Nbd3a0e7272e94e7e81488d97ebe2ca16
157 Nbd3a0e7272e94e7e81488d97ebe2ca16 rdf:first sg:person.01057315057.97
158 rdf:rest rdf:nil
159 Nd134096c81144598b2e07f8445c8c132 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Peptides
161 rdf:type schema:DefinedTerm
162 Ne4898d294fd74d288ff2f05b1724fa15 schema:name pubmed_id
163 schema:value 10081581
164 rdf:type schema:PropertyValue
165 Nf982ca7c170d40f4a5b90685202d9e4a schema:issueNumber 4
166 rdf:type schema:PublicationIssue
167 Nfb6126fdd5a344f2b4986122aebc90fe schema:name doi
168 schema:value 10.1023/a:1001738419877
169 rdf:type schema:PropertyValue
170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biological Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
174 schema:name Biochemistry and Cell Biology
175 rdf:type schema:DefinedTerm
176 sg:journal.1017348 schema:issn 0003-6072
177 1572-9699
178 schema:name Antonie van Leeuwenhoek
179 schema:publisher Springer Nature
180 rdf:type schema:Periodical
181 sg:person.01057315057.97 schema:affiliation grid-institutes:None
182 schema:familyName Avignone-Rossa
183 schema:givenName Claudio
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057315057.97
185 rdf:type schema:Person
186 sg:person.01077645070.93 schema:affiliation grid-institutes:None
187 schema:familyName Crielaard
188 schema:givenName Wim C.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077645070.93
190 rdf:type schema:Person
191 sg:person.01100360046.86 schema:affiliation grid-institutes:grid.65519.3e
192 schema:familyName Hoff
193 schema:givenName Wouter D.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100360046.86
195 rdf:type schema:Person
196 sg:person.01206611064.04 schema:affiliation grid-institutes:None
197 schema:familyName Teixeira de Mattos
198 schema:givenName M. Joost
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206611064.04
200 rdf:type schema:Person
201 sg:person.01310346747.96 schema:affiliation grid-institutes:None
202 schema:familyName Verhamme
203 schema:givenName Daniel T.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310346747.96
205 rdf:type schema:Person
206 sg:person.064413675.17 schema:affiliation grid-institutes:None
207 schema:familyName Hellingwerf
208 schema:givenName Klaas J.
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.064413675.17
210 rdf:type schema:Person
211 sg:person.0700176025.79 schema:affiliation grid-institutes:None
212 schema:familyName Kort
213 schema:givenName Remco
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700176025.79
215 rdf:type schema:Person
216 sg:pub.10.1007/bf00805841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027944828
217 https://doi.org/10.1007/bf00805841
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s002030050451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021555430
220 https://doi.org/10.1007/s002030050451
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/337745a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050539488
223 https://doi.org/10.1038/337745a0
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/350170a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028882114
226 https://doi.org/10.1038/350170a0
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/362446a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034459454
229 https://doi.org/10.1038/362446a0
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/362448a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026984769
232 https://doi.org/10.1038/362448a0
233 rdf:type schema:CreativeWork
234 grid-institutes:None schema:alternateName Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
235 schema:name Laboratory for Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
236 rdf:type schema:Organization
237 grid-institutes:grid.65519.3e schema:alternateName Department of Physics, Oklahoma State University, Stillwater, USA
238 schema:name Department of Physics, Oklahoma State University, Stillwater, USA
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...