Water and Heat Transport in the Desert Soil and Atmospheric Boundary Layer in Western China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-11

AUTHORS

Guo-Yue Niu, Shu-Fen Sun, Zhong-Xiang Hong

ABSTRACT

In order to understand the exchange and transferprocesses of water and energy in the desert soil andthe atmospheric boundary layer (ABL), we have developeda coupled model, in which a desert soil modelincluding water movement of both liquid and vapourphase, and an ABL model based on a non-local transilientturbulence closure scheme, are coupled together. Withthis model, the evolution of potential temperature andspecific humidity, the distribution of net radiationamong sensible, latent and soil heat fluxes, and thewater and heat flux profiles both in the soil and ABLhave been simulated. The HEIFE (HEIhe River Basin FieldExperiment) observational data are used to calibrate calculation of the water and heat flux both in thesoil and the ABL. The sensible and latent heatfluxes warm and moisten the bottom grid box (100m) of theABL. In this way the ABL model and the desert soil model are coupled together. The simulated results show that when the flux of watervapour in the soil is neglected, the evaporation rateand the flux profiles of specific humidity in the ABLshow great changes, hence the importance of watervapour movement in the desert soil for the calculationof specific humidity in the ABL. In the upper 5cm of thesoil, which is called an active layer, water andheat transport are more effective than in the substrate(soil below 5 cm). More... »

PAGES

179-195

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1000451423248

DOI

http://dx.doi.org/10.1023/a:1000451423248

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009885789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niu", 
        "givenName": "Guo-Yue", 
        "id": "sg:person.012653124531.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012653124531.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Shu-Fen", 
        "id": "sg:person.01122262475.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122262475.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Zhong-Xiang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0469(1984)041<3368:tttpit>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006883707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00117449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010537565", 
          "https://doi.org/10.1007/bf00117449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr014i004p00601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024234868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1984)041<3351:tttpit>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041179838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49711850805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047142950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/tr038i002p00222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053647534"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-11", 
    "datePublishedReg": "1997-11-01", 
    "description": "In order to understand the exchange and transferprocesses of water and energy in the desert soil andthe atmospheric boundary layer (ABL), we have developeda coupled model, in which a desert soil modelincluding water movement of both liquid and vapourphase, and an ABL model based on a non-local transilientturbulence closure scheme, are coupled together. Withthis model, the evolution of potential temperature andspecific humidity, the distribution of net radiationamong sensible, latent and soil heat fluxes, and thewater and heat flux profiles both in the soil and ABLhave been simulated. The HEIFE (HEIhe River Basin FieldExperiment) observational data are used to calibrate calculation of the water and heat flux both in thesoil and the ABL. The sensible and latent heatfluxes warm and moisten the bottom grid box (100m) of theABL. In this way the ABL model and the desert soil model are coupled together. The simulated results show that when the flux of watervapour in the soil is neglected, the evaporation rateand the flux profiles of specific humidity in the ABLshow great changes, hence the importance of watervapour movement in the desert soil for the calculationof specific humidity in the ABL. In the upper 5cm of thesoil, which is called an active layer, water andheat transport are more effective than in the substrate(soil below 5 cm).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1000451423248", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049385", 
        "issn": [
          "0006-8314", 
          "1573-1472"
        ], 
        "name": "Boundary-Layer Meteorology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "name": "Water and Heat Transport in the Desert Soil and Atmospheric Boundary Layer in Western China", 
    "pagination": "179-195", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f1841a0ed52cb39dca1b753956450f60f922ee5f06a31ffcd4565b2c881c8f0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1000451423248"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009885789"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1000451423248", 
      "https://app.dimensions.ai/details/publication/pub.1009885789"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1000451423248"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1000451423248'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1000451423248'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1000451423248'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1000451423248'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1000451423248 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author Nf14826f6297a472cb642a3d0e2f39f12
4 schema:citation sg:pub.10.1007/bf00117449
5 https://doi.org/10.1002/qj.49711850805
6 https://doi.org/10.1029/tr038i002p00222
7 https://doi.org/10.1029/wr014i004p00601
8 https://doi.org/10.1175/1520-0469(1984)041<3351:tttpit>2.0.co;2
9 https://doi.org/10.1175/1520-0469(1984)041<3368:tttpit>2.0.co;2
10 schema:datePublished 1997-11
11 schema:datePublishedReg 1997-11-01
12 schema:description In order to understand the exchange and transferprocesses of water and energy in the desert soil andthe atmospheric boundary layer (ABL), we have developeda coupled model, in which a desert soil modelincluding water movement of both liquid and vapourphase, and an ABL model based on a non-local transilientturbulence closure scheme, are coupled together. Withthis model, the evolution of potential temperature andspecific humidity, the distribution of net radiationamong sensible, latent and soil heat fluxes, and thewater and heat flux profiles both in the soil and ABLhave been simulated. The HEIFE (HEIhe River Basin FieldExperiment) observational data are used to calibrate calculation of the water and heat flux both in thesoil and the ABL. The sensible and latent heatfluxes warm and moisten the bottom grid box (100m) of theABL. In this way the ABL model and the desert soil model are coupled together. The simulated results show that when the flux of watervapour in the soil is neglected, the evaporation rateand the flux profiles of specific humidity in the ABLshow great changes, hence the importance of watervapour movement in the desert soil for the calculationof specific humidity in the ABL. In the upper 5cm of thesoil, which is called an active layer, water andheat transport are more effective than in the substrate(soil below 5 cm).
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N6e370564a9b94833a2695030afcdf8ae
17 N97620e31b9c242d2be53ceafbbf33b26
18 sg:journal.1049385
19 schema:name Water and Heat Transport in the Desert Soil and Atmospheric Boundary Layer in Western China
20 schema:pagination 179-195
21 schema:productId Na9788cb687014cb7a64b7ea267feca3a
22 Nac864b85a7f64bd3a159afb1f1c99bce
23 Nd8e7ade4e3f94d8c9c07f11e977d7405
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009885789
25 https://doi.org/10.1023/a:1000451423248
26 schema:sdDatePublished 2019-04-11T00:08
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N28ca6b6fd17c4a849ff57a8677278847
29 schema:url http://link.springer.com/10.1023/A:1000451423248
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N28ca6b6fd17c4a849ff57a8677278847 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N6e370564a9b94833a2695030afcdf8ae schema:issueNumber 2
36 rdf:type schema:PublicationIssue
37 N7f13741467924429885259dbb0a30a48 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
38 schema:familyName Hong
39 schema:givenName Zhong-Xiang
40 rdf:type schema:Person
41 N97620e31b9c242d2be53ceafbbf33b26 schema:volumeNumber 85
42 rdf:type schema:PublicationVolume
43 Na09bb42a07c845d0b9031ff787af8751 rdf:first N7f13741467924429885259dbb0a30a48
44 rdf:rest rdf:nil
45 Na9788cb687014cb7a64b7ea267feca3a schema:name readcube_id
46 schema:value 2f1841a0ed52cb39dca1b753956450f60f922ee5f06a31ffcd4565b2c881c8f0
47 rdf:type schema:PropertyValue
48 Nac864b85a7f64bd3a159afb1f1c99bce schema:name dimensions_id
49 schema:value pub.1009885789
50 rdf:type schema:PropertyValue
51 Nd4bdc22e16ad47ebaaf2155cd6cf5d99 rdf:first sg:person.01122262475.12
52 rdf:rest Na09bb42a07c845d0b9031ff787af8751
53 Nd8e7ade4e3f94d8c9c07f11e977d7405 schema:name doi
54 schema:value 10.1023/a:1000451423248
55 rdf:type schema:PropertyValue
56 Nf14826f6297a472cb642a3d0e2f39f12 rdf:first sg:person.012653124531.01
57 rdf:rest Nd4bdc22e16ad47ebaaf2155cd6cf5d99
58 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
59 schema:name Environmental Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
62 schema:name Soil Sciences
63 rdf:type schema:DefinedTerm
64 sg:journal.1049385 schema:issn 0006-8314
65 1573-1472
66 schema:name Boundary-Layer Meteorology
67 rdf:type schema:Periodical
68 sg:person.01122262475.12 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
69 schema:familyName Sun
70 schema:givenName Shu-Fen
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122262475.12
72 rdf:type schema:Person
73 sg:person.012653124531.01 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
74 schema:familyName Niu
75 schema:givenName Guo-Yue
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012653124531.01
77 rdf:type schema:Person
78 sg:pub.10.1007/bf00117449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010537565
79 https://doi.org/10.1007/bf00117449
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1002/qj.49711850805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047142950
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1029/tr038i002p00222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053647534
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1029/wr014i004p00601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024234868
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1175/1520-0469(1984)041<3351:tttpit>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041179838
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1175/1520-0469(1984)041<3368:tttpit>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006883707
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
92 schema:name Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...