Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12-01

AUTHORS

Y. ABD ELMABOUD, Kh. S. MEKHEIMER, Mohamed S. MOHAMED

ABSTRACT

An analysis has been achieved to study the natural convection of a non-Newtonian fluid (namely a Carreau fluid) in a vertical channel with rhythmically contracting walls. The Navier-Stokes and the energy equations are reduced to a system of non-linear PDE by using the long wavelength approximation. The optimal homotopy analysis method (OHAM) is introduced to obtain the exact solutions for velocity and temperature fields. The convergence of the obtained OHAM solution is discussed explicitly. Numerical calculations are carried out for the pressure rise and the features of the flow and temperature characteristics are analyzed by plotting graphs and discussed in detail. More... »

PAGES

969-979

References to SciGraph publications

  • 2012. Homotopy Analysis Method in Nonlinear Differential Equations in NONE
  • 1968-12. Peristaltic flow in tubes in BULLETIN OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1016/s1001-6058(15)60559-5

    DOI

    http://dx.doi.org/10.1016/s1001-6058(15)60559-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015855440


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt", 
              "id": "http://www.grid.ac/institutes/grid.411303.4", 
              "name": [
                "Mathematics Department, Faculty of Science and Arts, Khulais, University Of Jeddah, Saudi Arabia", 
                "Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "ELMABOUD", 
            "givenName": "Y. ABD", 
            "id": "sg:person.014366534140.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366534140.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt", 
              "id": "http://www.grid.ac/institutes/grid.411303.4", 
              "name": [
                "Mathematics Department, Faculty of Science, Taif University Hawia, P.O. Box 888, Taif, Saudi Arabia", 
                "Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "MEKHEIMER", 
            "givenName": "Kh. S.", 
            "id": "sg:person.010535040557.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010535040557.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt", 
              "id": "http://www.grid.ac/institutes/grid.411303.4", 
              "name": [
                "Mathematics Department, Faculty of Science, Taif University Hawia, P.O. Box 888, Taif, Saudi Arabia", 
                "Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "MOHAMED", 
            "givenName": "Mohamed S.", 
            "id": "sg:person.015527435207.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015527435207.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-25132-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009033508", 
              "https://doi.org/10.1007/978-3-642-25132-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02476682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031341017", 
              "https://doi.org/10.1007/bf02476682"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12-01", 
        "datePublishedReg": "2015-12-01", 
        "description": "An analysis has been achieved to study the natural convection of a non-Newtonian fluid (namely a Carreau fluid) in a vertical channel with rhythmically contracting walls. The Navier-Stokes and the energy equations are reduced to a system of non-linear PDE by using the long wavelength approximation. The optimal homotopy analysis method (OHAM) is introduced to obtain the exact solutions for velocity and temperature fields. The convergence of the obtained OHAM solution is discussed explicitly. Numerical calculations are carried out for the pressure rise and the features of the flow and temperature characteristics are analyzed by plotting graphs and discussed in detail.", 
        "genre": "article", 
        "id": "sg:pub.10.1016/s1001-6058(15)60559-5", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1046896", 
            "issn": [
              "1001-6058", 
              "1878-0342"
            ], 
            "name": "Journal of Hydrodynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "optimal homotopy analysis method", 
          "vertical channel", 
          "natural convection flow", 
          "non-Newtonian fluids", 
          "natural convection", 
          "convection flow", 
          "temperature field", 
          "Carreau fluid", 
          "energy equation", 
          "Navier\u2013Stokes", 
          "OHAM solution", 
          "homotopy analysis method", 
          "temperature characteristics", 
          "long-wavelength approximation", 
          "non-linear PDEs", 
          "pressure rise", 
          "wavelength approximation", 
          "numerical calculations", 
          "series solution", 
          "flow", 
          "analysis method", 
          "exact solution", 
          "convection", 
          "solution", 
          "fluid", 
          "velocity", 
          "channels", 
          "wall", 
          "equations", 
          "field", 
          "characteristics", 
          "calculations", 
          "system", 
          "method", 
          "detail", 
          "approximation", 
          "PDEs", 
          "convergence", 
          "analysis", 
          "features", 
          "rise", 
          "graph", 
          "peristalsis"
        ], 
        "name": "Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis", 
        "pagination": "969-979", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015855440"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1016/s1001-6058(15)60559-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1016/s1001-6058(15)60559-5", 
          "https://app.dimensions.ai/details/publication/pub.1015855440"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_662.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1016/s1001-6058(15)60559-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(15)60559-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(15)60559-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(15)60559-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(15)60559-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      21 PREDICATES      69 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1016/s1001-6058(15)60559-5 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nd4f23e77cd904118a288bbb8c0de121b
    4 schema:citation sg:pub.10.1007/978-3-642-25132-0
    5 sg:pub.10.1007/bf02476682
    6 schema:datePublished 2015-12-01
    7 schema:datePublishedReg 2015-12-01
    8 schema:description An analysis has been achieved to study the natural convection of a non-Newtonian fluid (namely a Carreau fluid) in a vertical channel with rhythmically contracting walls. The Navier-Stokes and the energy equations are reduced to a system of non-linear PDE by using the long wavelength approximation. The optimal homotopy analysis method (OHAM) is introduced to obtain the exact solutions for velocity and temperature fields. The convergence of the obtained OHAM solution is discussed explicitly. Numerical calculations are carried out for the pressure rise and the features of the flow and temperature characteristics are analyzed by plotting graphs and discussed in detail.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N7634e3aeb0074cd6925f55b23f61490f
    12 N782cda38d1bf422a87b7cd58b9b8ea97
    13 sg:journal.1046896
    14 schema:keywords Carreau fluid
    15 Navier–Stokes
    16 OHAM solution
    17 PDEs
    18 analysis
    19 analysis method
    20 approximation
    21 calculations
    22 channels
    23 characteristics
    24 convection
    25 convection flow
    26 convergence
    27 detail
    28 energy equation
    29 equations
    30 exact solution
    31 features
    32 field
    33 flow
    34 fluid
    35 graph
    36 homotopy analysis method
    37 long-wavelength approximation
    38 method
    39 natural convection
    40 natural convection flow
    41 non-Newtonian fluids
    42 non-linear PDEs
    43 numerical calculations
    44 optimal homotopy analysis method
    45 peristalsis
    46 pressure rise
    47 rise
    48 series solution
    49 solution
    50 system
    51 temperature characteristics
    52 temperature field
    53 velocity
    54 vertical channel
    55 wall
    56 wavelength approximation
    57 schema:name Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis
    58 schema:pagination 969-979
    59 schema:productId N86dfb053e1fd4bdbbdcb513c7afe2bce
    60 Nf0ffb697809a42bb99874545464e16cd
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015855440
    62 https://doi.org/10.1016/s1001-6058(15)60559-5
    63 schema:sdDatePublished 2022-12-01T06:33
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N6c8ff1b0df1044939c414724acc9c52a
    66 schema:url https://doi.org/10.1016/s1001-6058(15)60559-5
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N2906a7ab97d24516a244c45b5a62219f rdf:first sg:person.015527435207.27
    71 rdf:rest rdf:nil
    72 N6c8ff1b0df1044939c414724acc9c52a schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N7634e3aeb0074cd6925f55b23f61490f schema:issueNumber 6
    75 rdf:type schema:PublicationIssue
    76 N782cda38d1bf422a87b7cd58b9b8ea97 schema:volumeNumber 27
    77 rdf:type schema:PublicationVolume
    78 N86dfb053e1fd4bdbbdcb513c7afe2bce schema:name doi
    79 schema:value 10.1016/s1001-6058(15)60559-5
    80 rdf:type schema:PropertyValue
    81 Nd4f23e77cd904118a288bbb8c0de121b rdf:first sg:person.014366534140.65
    82 rdf:rest Ndae7fe9a41ec46a5abb3761dbe07bd1c
    83 Ndae7fe9a41ec46a5abb3761dbe07bd1c rdf:first sg:person.010535040557.36
    84 rdf:rest N2906a7ab97d24516a244c45b5a62219f
    85 Nf0ffb697809a42bb99874545464e16cd schema:name dimensions_id
    86 schema:value pub.1015855440
    87 rdf:type schema:PropertyValue
    88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Engineering
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Interdisciplinary Engineering
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1046896 schema:issn 1001-6058
    95 1878-0342
    96 schema:name Journal of Hydrodynamics
    97 schema:publisher Springer Nature
    98 rdf:type schema:Periodical
    99 sg:person.010535040557.36 schema:affiliation grid-institutes:grid.411303.4
    100 schema:familyName MEKHEIMER
    101 schema:givenName Kh. S.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010535040557.36
    103 rdf:type schema:Person
    104 sg:person.014366534140.65 schema:affiliation grid-institutes:grid.411303.4
    105 schema:familyName ELMABOUD
    106 schema:givenName Y. ABD
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366534140.65
    108 rdf:type schema:Person
    109 sg:person.015527435207.27 schema:affiliation grid-institutes:grid.411303.4
    110 schema:familyName MOHAMED
    111 schema:givenName Mohamed S.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015527435207.27
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-3-642-25132-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009033508
    115 https://doi.org/10.1007/978-3-642-25132-0
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/bf02476682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031341017
    118 https://doi.org/10.1007/bf02476682
    119 rdf:type schema:CreativeWork
    120 grid-institutes:grid.411303.4 schema:alternateName Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt
    121 Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
    122 schema:name Mathematics Department, Faculty of Science and Arts, Khulais, University Of Jeddah, Saudi Arabia
    123 Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt
    124 Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
    125 Mathematics Department, Faculty of Science, Taif University Hawia, P.O. Box 888, Taif, Saudi Arabia
    126 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...