A simplified numerical model of 3-D groundwater and solute transport at large scale area View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-06-01

AUTHORS

LIN Lin, Jin-Zhong YANG, Bin ZHANG, ZHU Yan

ABSTRACT

A simplified numerical model of groundwater and solute transport is developed. At large scale area there exists a big spatial scale difference between horizontal and vertical length scales. In the resultant model, the seepage region is particularly divided into several virtual layers along the z direction and vertical 1-D columns covering x-y 2-D area according to stratum properties. The numerical algorithm is replacing the full 3-D water and mass balance analysis as the 2-D Galerkin finite element method in x- and y-directions and 1-D finite differential approach in the z direction. The reasonable method of giving minimum thickness is successfully used to handle transient change of water table, drying cells and problem of rewetting. The solution of the simplified model is preconditioned conjugate gradient and ORTHOMIN method. The validity of the developed 3-D groundwater model is tested with the typical pumping and backwater scenarios. Results of water balance of the computed example reveal the model computation reliability. Based on a representative 3-D pollution case, the solute transport module is tested against computing results using the MT3DMS. The capability and high efficiency to predict non-stationary situations of free groundwater surface and solute plume in regional scale problem is quantitatively investigated. It is shown that the proposed model is computationally effective. More... »

PAGES

319-328

Identifiers

URI

http://scigraph.springernature.com/pub.10.1016/s1001-6058(09)60061-5

DOI

http://dx.doi.org/10.1016/s1001-6058(09)60061-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014664374


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China", 
          "id": "http://www.grid.ac/institutes/grid.458485.0", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China", 
            "Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "LIN", 
        "id": "sg:person.010501736247.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010501736247.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "YANG", 
        "givenName": "Jin-Zhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China", 
          "id": "http://www.grid.ac/institutes/grid.458485.0", 
          "name": [
            "Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "ZHANG", 
        "givenName": "Bin", 
        "id": "sg:person.016201206140.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016201206140.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "ZHU", 
        "id": "sg:person.01272341355.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272341355.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1016/s1001-6058(08)60069-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000445624", 
          "https://doi.org/10.1016/s1001-6058(08)60069-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-6058(08)60068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033711651", 
          "https://doi.org/10.1016/s1001-6058(08)60068-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-6058(08)60097-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006844732", 
          "https://doi.org/10.1016/s1001-6058(08)60097-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06-01", 
    "datePublishedReg": "2010-06-01", 
    "description": "A simplified numerical model of groundwater and solute transport is developed. At large scale area there exists a big spatial scale difference between horizontal and vertical length scales. In the resultant model, the seepage region is particularly divided into several virtual layers along the z direction and vertical 1-D columns covering x-y 2-D area according to stratum properties. The numerical algorithm is replacing the full 3-D water and mass balance analysis as the 2-D Galerkin finite element method in x- and y-directions and 1-D finite differential approach in the z direction. The reasonable method of giving minimum thickness is successfully used to handle transient change of water table, drying cells and problem of rewetting. The solution of the simplified model is preconditioned conjugate gradient and ORTHOMIN method. The validity of the developed 3-D groundwater model is tested with the typical pumping and backwater scenarios. Results of water balance of the computed example reveal the model computation reliability. Based on a representative 3-D pollution case, the solute transport module is tested against computing results using the MT3DMS. The capability and high efficiency to predict non-stationary situations of free groundwater surface and solute plume in regional scale problem is quantitatively investigated. It is shown that the proposed model is computationally effective.", 
    "genre": "article", 
    "id": "sg:pub.10.1016/s1001-6058(09)60061-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4970361", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1046896", 
        "issn": [
          "1001-6058", 
          "1878-0342"
        ], 
        "name": "Journal of Hydrodynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "simplified numerical model", 
      "numerical model", 
      "large scale area", 
      "solute transport", 
      "vertical length scale", 
      "finite element method", 
      "finite differential approach", 
      "solute transport module", 
      "regional scale problem", 
      "Galerkin finite element method", 
      "scale area", 
      "non-stationary situations", 
      "element method", 
      "solute plume", 
      "transport module", 
      "minimum thickness", 
      "mass balance analysis", 
      "high efficiency", 
      "strata properties", 
      "length scales", 
      "groundwater surface", 
      "spatial scale differences", 
      "simplified model", 
      "seepage region", 
      "groundwater model", 
      "water table", 
      "Orthomin method", 
      "numerical algorithm", 
      "balance analysis", 
      "computing results", 
      "virtual layer", 
      "MT3DMS", 
      "pollution cases", 
      "scale differences", 
      "reasonable method", 
      "resultant model", 
      "groundwater", 
      "transport", 
      "layer", 
      "direction", 
      "thickness", 
      "scale problems", 
      "differential approach", 
      "water balance", 
      "model", 
      "plume", 
      "surface", 
      "method", 
      "efficiency", 
      "properties", 
      "water", 
      "pumping", 
      "capability", 
      "gradient", 
      "module", 
      "column", 
      "reliability", 
      "solution", 
      "area", 
      "results", 
      "problem", 
      "computation reliability", 
      "transient changes", 
      "scenarios", 
      "algorithm", 
      "scale", 
      "balance", 
      "example", 
      "approach", 
      "analysis", 
      "region", 
      "validity", 
      "table", 
      "situation", 
      "cases", 
      "changes", 
      "differences", 
      "cells", 
      "big spatial scale difference", 
      "typical pumping", 
      "model computation reliability", 
      "free groundwater surface"
    ], 
    "name": "A simplified numerical model of 3-D groundwater and solute transport at large scale area", 
    "pagination": "319-328", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014664374"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1016/s1001-6058(09)60061-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1016/s1001-6058(09)60061-5", 
      "https://app.dimensions.ai/details/publication/pub.1014664374"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1016/s1001-6058(09)60061-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(09)60061-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(09)60061-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(09)60061-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(09)60061-5'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      22 PREDICATES      109 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1016/s1001-6058(09)60061-5 schema:about anzsrc-for:09
2 schema:author N4bd4a0ed239343ee9d404bb279b214af
3 schema:citation sg:pub.10.1016/s1001-6058(08)60068-2
4 sg:pub.10.1016/s1001-6058(08)60069-4
5 sg:pub.10.1016/s1001-6058(08)60097-9
6 schema:datePublished 2010-06-01
7 schema:datePublishedReg 2010-06-01
8 schema:description A simplified numerical model of groundwater and solute transport is developed. At large scale area there exists a big spatial scale difference between horizontal and vertical length scales. In the resultant model, the seepage region is particularly divided into several virtual layers along the z direction and vertical 1-D columns covering x-y 2-D area according to stratum properties. The numerical algorithm is replacing the full 3-D water and mass balance analysis as the 2-D Galerkin finite element method in x- and y-directions and 1-D finite differential approach in the z direction. The reasonable method of giving minimum thickness is successfully used to handle transient change of water table, drying cells and problem of rewetting. The solution of the simplified model is preconditioned conjugate gradient and ORTHOMIN method. The validity of the developed 3-D groundwater model is tested with the typical pumping and backwater scenarios. Results of water balance of the computed example reveal the model computation reliability. Based on a representative 3-D pollution case, the solute transport module is tested against computing results using the MT3DMS. The capability and high efficiency to predict non-stationary situations of free groundwater surface and solute plume in regional scale problem is quantitatively investigated. It is shown that the proposed model is computationally effective.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N75c988b902b64cd180300804382a76ae
13 Ncb3de3e5cbd44fc7941a970d9c7b7a66
14 sg:journal.1046896
15 schema:keywords Galerkin finite element method
16 MT3DMS
17 Orthomin method
18 algorithm
19 analysis
20 approach
21 area
22 balance
23 balance analysis
24 big spatial scale difference
25 capability
26 cases
27 cells
28 changes
29 column
30 computation reliability
31 computing results
32 differences
33 differential approach
34 direction
35 efficiency
36 element method
37 example
38 finite differential approach
39 finite element method
40 free groundwater surface
41 gradient
42 groundwater
43 groundwater model
44 groundwater surface
45 high efficiency
46 large scale area
47 layer
48 length scales
49 mass balance analysis
50 method
51 minimum thickness
52 model
53 model computation reliability
54 module
55 non-stationary situations
56 numerical algorithm
57 numerical model
58 plume
59 pollution cases
60 problem
61 properties
62 pumping
63 reasonable method
64 region
65 regional scale problem
66 reliability
67 resultant model
68 results
69 scale
70 scale area
71 scale differences
72 scale problems
73 scenarios
74 seepage region
75 simplified model
76 simplified numerical model
77 situation
78 solute plume
79 solute transport
80 solute transport module
81 solution
82 spatial scale differences
83 strata properties
84 surface
85 table
86 thickness
87 transient changes
88 transport
89 transport module
90 typical pumping
91 validity
92 vertical length scale
93 virtual layer
94 water
95 water balance
96 water table
97 schema:name A simplified numerical model of 3-D groundwater and solute transport at large scale area
98 schema:pagination 319-328
99 schema:productId N31e987bf92c648c29471b3011ac3f848
100 N8d8df9f18c5a4d25802ceb6731d64ebc
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014664374
102 https://doi.org/10.1016/s1001-6058(09)60061-5
103 schema:sdDatePublished 2022-01-01T18:21
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher N0cc6c55d8ad7490899f569ea5e4020cd
106 schema:url https://doi.org/10.1016/s1001-6058(09)60061-5
107 sgo:license sg:explorer/license/
108 sgo:sdDataset articles
109 rdf:type schema:ScholarlyArticle
110 N0cc6c55d8ad7490899f569ea5e4020cd schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N31e987bf92c648c29471b3011ac3f848 schema:name doi
113 schema:value 10.1016/s1001-6058(09)60061-5
114 rdf:type schema:PropertyValue
115 N4bd4a0ed239343ee9d404bb279b214af rdf:first sg:person.010501736247.59
116 rdf:rest Nf35a12146825435c9a9705793a24587b
117 N75c988b902b64cd180300804382a76ae schema:volumeNumber 22
118 rdf:type schema:PublicationVolume
119 N7add58c8046e4f35a1c763162820a18f rdf:first sg:person.01272341355.16
120 rdf:rest rdf:nil
121 N8d8df9f18c5a4d25802ceb6731d64ebc schema:name dimensions_id
122 schema:value pub.1014664374
123 rdf:type schema:PropertyValue
124 Na4a393b715c242719cc1c5069231703e rdf:first sg:person.016201206140.88
125 rdf:rest N7add58c8046e4f35a1c763162820a18f
126 Ncb3de3e5cbd44fc7941a970d9c7b7a66 schema:issueNumber 3
127 rdf:type schema:PublicationIssue
128 Nf35a12146825435c9a9705793a24587b rdf:first sg:person.014731165631.01
129 rdf:rest Na4a393b715c242719cc1c5069231703e
130 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
131 schema:name Engineering
132 rdf:type schema:DefinedTerm
133 sg:grant.4970361 http://pending.schema.org/fundedItem sg:pub.10.1016/s1001-6058(09)60061-5
134 rdf:type schema:MonetaryGrant
135 sg:journal.1046896 schema:issn 1001-6058
136 1878-0342
137 schema:name Journal of Hydrodynamics
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.010501736247.59 schema:affiliation grid-institutes:grid.458485.0
141 schema:familyName Lin
142 schema:givenName LIN
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010501736247.59
144 rdf:type schema:Person
145 sg:person.01272341355.16 schema:affiliation grid-institutes:grid.49470.3e
146 schema:familyName Yan
147 schema:givenName ZHU
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272341355.16
149 rdf:type schema:Person
150 sg:person.014731165631.01 schema:affiliation grid-institutes:grid.49470.3e
151 schema:familyName YANG
152 schema:givenName Jin-Zhong
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
154 rdf:type schema:Person
155 sg:person.016201206140.88 schema:affiliation grid-institutes:grid.458485.0
156 schema:familyName ZHANG
157 schema:givenName Bin
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016201206140.88
159 rdf:type schema:Person
160 sg:pub.10.1016/s1001-6058(08)60068-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033711651
161 https://doi.org/10.1016/s1001-6058(08)60068-2
162 rdf:type schema:CreativeWork
163 sg:pub.10.1016/s1001-6058(08)60069-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000445624
164 https://doi.org/10.1016/s1001-6058(08)60069-4
165 rdf:type schema:CreativeWork
166 sg:pub.10.1016/s1001-6058(08)60097-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006844732
167 https://doi.org/10.1016/s1001-6058(08)60097-9
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.458485.0 schema:alternateName Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
170 schema:name Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
171 State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
172 rdf:type schema:Organization
173 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
174 schema:name State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...