Qualification of uncertainty for simulating solute transport in the heterogeneous media with sparse grid collocation method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12-01

AUTHORS

Liang-sheng SHI, Jin-zhong YANG

ABSTRACT

The sparse grid collocation method is discussed to qualify the uncertainty of solute transport. The Karhunen-Loeve (KL) expansion is employed to decompose the log transformed hydraulic conductivity. The head, velocity and concentration fields are represented by the Lagrange polynomial expansion. A sparse grid collocation method is then used to reduce the original stochastic partial differential equations to a set of deterministic equations which is collocated at selected interpolation (collocation) points. The collocation points are constructed by the Smolyak algorithm. The accuracy, efficiency and convergence property of sparse grid collocation method are investigated by numerical experiments. The analysis shows that stochastic collocation strategy helps to decouple stochastic computations, and all the numerical computation is possible to be implemented by existing deterministic finite element codes. The proposed method provides an efficient way to evaluate the uncertainty of the solute transport in the heterogeneous media. More... »

PAGES

779-789

Identifiers

URI

http://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9

DOI

http://dx.doi.org/10.1016/s1001-6058(08)60213-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029517090


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA", 
          "id": "http://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China", 
            "The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "SHI", 
        "givenName": "Liang-sheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "YANG", 
        "givenName": "Jin-zhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002110200401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041429159", 
          "https://doi.org/10.1007/s002110200401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-6058(08)60069-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000445624", 
          "https://doi.org/10.1016/s1001-6058(08)60069-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-6058(08)60068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033711651", 
          "https://doi.org/10.1016/s1001-6058(08)60068-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-6058(08)60094-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039400580", 
          "https://doi.org/10.1016/s1001-6058(08)60094-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094591", 
          "https://doi.org/10.1007/978-1-4612-3094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-6058(06)60141-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039190519", 
          "https://doi.org/10.1016/s1001-6058(06)60141-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-75015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019196658", 
          "https://doi.org/10.1007/978-3-642-75015-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12-01", 
    "datePublishedReg": "2009-12-01", 
    "description": "The sparse grid collocation method is discussed to qualify the uncertainty of solute transport. The Karhunen-Loeve (KL) expansion is employed to decompose the log transformed hydraulic conductivity. The head, velocity and concentration fields are represented by the Lagrange polynomial expansion. A sparse grid collocation method is then used to reduce the original stochastic partial differential equations to a set of deterministic equations which is collocated at selected interpolation (collocation) points. The collocation points are constructed by the Smolyak algorithm. The accuracy, efficiency and convergence property of sparse grid collocation method are investigated by numerical experiments. The analysis shows that stochastic collocation strategy helps to decouple stochastic computations, and all the numerical computation is possible to be implemented by existing deterministic finite element codes. The proposed method provides an efficient way to evaluate the uncertainty of the solute transport in the heterogeneous media.", 
    "genre": "article", 
    "id": "sg:pub.10.1016/s1001-6058(08)60213-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4970361", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4985369", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1046896", 
        "issn": [
          "1001-6058", 
          "1878-0342"
        ], 
        "name": "Journal of Hydrodynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "sparse grid collocation method", 
      "collocation method", 
      "original stochastic partial differential equations", 
      "stochastic partial differential equations", 
      "heterogeneous media", 
      "deterministic finite element codes", 
      "Lagrange polynomial expansions", 
      "partial differential equations", 
      "Karhunen-Loeve expansion", 
      "solute transport", 
      "differential equations", 
      "deterministic equations", 
      "Smolyak algorithm", 
      "collocation points", 
      "stochastic computation", 
      "convergence properties", 
      "collocation strategy", 
      "numerical experiments", 
      "numerical computations", 
      "polynomial expansion", 
      "interpolation points", 
      "concentration fields", 
      "equations", 
      "finite element code", 
      "computation", 
      "uncertainty", 
      "element code", 
      "efficient way", 
      "algorithm", 
      "point", 
      "velocity", 
      "expansion", 
      "hydraulic conductivity", 
      "field", 
      "transport", 
      "set", 
      "accuracy", 
      "properties", 
      "code", 
      "conductivity", 
      "medium", 
      "efficiency", 
      "experiments", 
      "way", 
      "analysis", 
      "logs", 
      "strategies", 
      "qualification", 
      "method", 
      "head"
    ], 
    "name": "Qualification of uncertainty for simulating solute transport in the heterogeneous media with sparse grid collocation method", 
    "pagination": "779-789", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029517090"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1016/s1001-6058(08)60213-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1016/s1001-6058(08)60213-9", 
      "https://app.dimensions.ai/details/publication/pub.1029517090"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_489.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1016/s1001-6058(08)60213-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      22 PREDICATES      81 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1016/s1001-6058(08)60213-9 schema:about anzsrc-for:09
2 schema:author N823d7576575e4e00a13619c74169e786
3 schema:citation sg:pub.10.1007/978-1-4612-3094-6
4 sg:pub.10.1007/978-3-642-75015-1
5 sg:pub.10.1007/s002110200401
6 sg:pub.10.1016/s1001-6058(06)60141-8
7 sg:pub.10.1016/s1001-6058(08)60068-2
8 sg:pub.10.1016/s1001-6058(08)60069-4
9 sg:pub.10.1016/s1001-6058(08)60094-3
10 schema:datePublished 2009-12-01
11 schema:datePublishedReg 2009-12-01
12 schema:description The sparse grid collocation method is discussed to qualify the uncertainty of solute transport. The Karhunen-Loeve (KL) expansion is employed to decompose the log transformed hydraulic conductivity. The head, velocity and concentration fields are represented by the Lagrange polynomial expansion. A sparse grid collocation method is then used to reduce the original stochastic partial differential equations to a set of deterministic equations which is collocated at selected interpolation (collocation) points. The collocation points are constructed by the Smolyak algorithm. The accuracy, efficiency and convergence property of sparse grid collocation method are investigated by numerical experiments. The analysis shows that stochastic collocation strategy helps to decouple stochastic computations, and all the numerical computation is possible to be implemented by existing deterministic finite element codes. The proposed method provides an efficient way to evaluate the uncertainty of the solute transport in the heterogeneous media.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N5b67697454b044c9844687ce870814a5
17 N8af7c3b1773c457ead13423afbab0005
18 sg:journal.1046896
19 schema:keywords Karhunen-Loeve expansion
20 Lagrange polynomial expansions
21 Smolyak algorithm
22 accuracy
23 algorithm
24 analysis
25 code
26 collocation method
27 collocation points
28 collocation strategy
29 computation
30 concentration fields
31 conductivity
32 convergence properties
33 deterministic equations
34 deterministic finite element codes
35 differential equations
36 efficiency
37 efficient way
38 element code
39 equations
40 expansion
41 experiments
42 field
43 finite element code
44 head
45 heterogeneous media
46 hydraulic conductivity
47 interpolation points
48 logs
49 medium
50 method
51 numerical computations
52 numerical experiments
53 original stochastic partial differential equations
54 partial differential equations
55 point
56 polynomial expansion
57 properties
58 qualification
59 set
60 solute transport
61 sparse grid collocation method
62 stochastic computation
63 stochastic partial differential equations
64 strategies
65 transport
66 uncertainty
67 velocity
68 way
69 schema:name Qualification of uncertainty for simulating solute transport in the heterogeneous media with sparse grid collocation method
70 schema:pagination 779-789
71 schema:productId N9363fb1f754f46dd886ac8c0e6a13794
72 Ne78b1e841bb24d7a87890270f921edf1
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029517090
74 https://doi.org/10.1016/s1001-6058(08)60213-9
75 schema:sdDatePublished 2022-05-10T09:58
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Ne7ca8ae4f7a94e06b9e1163ae9c896a1
78 schema:url https://doi.org/10.1016/s1001-6058(08)60213-9
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N5b67697454b044c9844687ce870814a5 schema:issueNumber 6
83 rdf:type schema:PublicationIssue
84 N823d7576575e4e00a13619c74169e786 rdf:first sg:person.013753244525.37
85 rdf:rest Nb1337a09755f43a89e127770cf3d82c7
86 N8af7c3b1773c457ead13423afbab0005 schema:volumeNumber 21
87 rdf:type schema:PublicationVolume
88 N9363fb1f754f46dd886ac8c0e6a13794 schema:name doi
89 schema:value 10.1016/s1001-6058(08)60213-9
90 rdf:type schema:PropertyValue
91 Nb1337a09755f43a89e127770cf3d82c7 rdf:first sg:person.014731165631.01
92 rdf:rest rdf:nil
93 Ne78b1e841bb24d7a87890270f921edf1 schema:name dimensions_id
94 schema:value pub.1029517090
95 rdf:type schema:PropertyValue
96 Ne7ca8ae4f7a94e06b9e1163ae9c896a1 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 sg:grant.4970361 http://pending.schema.org/fundedItem sg:pub.10.1016/s1001-6058(08)60213-9
102 rdf:type schema:MonetaryGrant
103 sg:grant.4985369 http://pending.schema.org/fundedItem sg:pub.10.1016/s1001-6058(08)60213-9
104 rdf:type schema:MonetaryGrant
105 sg:journal.1046896 schema:issn 1001-6058
106 1878-0342
107 schema:name Journal of Hydrodynamics
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.013753244525.37 schema:affiliation grid-institutes:grid.42505.36
111 schema:familyName SHI
112 schema:givenName Liang-sheng
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
114 rdf:type schema:Person
115 sg:person.014731165631.01 schema:affiliation grid-institutes:grid.49470.3e
116 schema:familyName YANG
117 schema:givenName Jin-zhong
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
119 rdf:type schema:Person
120 sg:pub.10.1007/978-1-4612-3094-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033094591
121 https://doi.org/10.1007/978-1-4612-3094-6
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-642-75015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019196658
124 https://doi.org/10.1007/978-3-642-75015-1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s002110200401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041429159
127 https://doi.org/10.1007/s002110200401
128 rdf:type schema:CreativeWork
129 sg:pub.10.1016/s1001-6058(06)60141-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039190519
130 https://doi.org/10.1016/s1001-6058(06)60141-8
131 rdf:type schema:CreativeWork
132 sg:pub.10.1016/s1001-6058(08)60068-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033711651
133 https://doi.org/10.1016/s1001-6058(08)60068-2
134 rdf:type schema:CreativeWork
135 sg:pub.10.1016/s1001-6058(08)60069-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000445624
136 https://doi.org/10.1016/s1001-6058(08)60069-4
137 rdf:type schema:CreativeWork
138 sg:pub.10.1016/s1001-6058(08)60094-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039400580
139 https://doi.org/10.1016/s1001-6058(08)60094-3
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.42505.36 schema:alternateName The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
142 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
143 The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
144 rdf:type schema:Organization
145 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
146 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...