Ontology type: schema:ScholarlyArticle
2009-12-01
AUTHORSLiang-sheng SHI, Jin-zhong YANG
ABSTRACTThe sparse grid collocation method is discussed to qualify the uncertainty of solute transport. The Karhunen-Loeve (KL) expansion is employed to decompose the log transformed hydraulic conductivity. The head, velocity and concentration fields are represented by the Lagrange polynomial expansion. A sparse grid collocation method is then used to reduce the original stochastic partial differential equations to a set of deterministic equations which is collocated at selected interpolation (collocation) points. The collocation points are constructed by the Smolyak algorithm. The accuracy, efficiency and convergence property of sparse grid collocation method are investigated by numerical experiments. The analysis shows that stochastic collocation strategy helps to decouple stochastic computations, and all the numerical computation is possible to be implemented by existing deterministic finite element codes. The proposed method provides an efficient way to evaluate the uncertainty of the solute transport in the heterogeneous media. More... »
PAGES779-789
http://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9
DOIhttp://dx.doi.org/10.1016/s1001-6058(08)60213-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1029517090
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA",
"id": "http://www.grid.ac/institutes/grid.42505.36",
"name": [
"State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China",
"The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA"
],
"type": "Organization"
},
"familyName": "SHI",
"givenName": "Liang-sheng",
"id": "sg:person.013753244525.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China",
"id": "http://www.grid.ac/institutes/grid.49470.3e",
"name": [
"State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China"
],
"type": "Organization"
},
"familyName": "YANG",
"givenName": "Jin-zhong",
"id": "sg:person.014731165631.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s002110200401",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041429159",
"https://doi.org/10.1007/s002110200401"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1016/s1001-6058(08)60069-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000445624",
"https://doi.org/10.1016/s1001-6058(08)60069-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1016/s1001-6058(08)60068-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033711651",
"https://doi.org/10.1016/s1001-6058(08)60068-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1016/s1001-6058(08)60094-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039400580",
"https://doi.org/10.1016/s1001-6058(08)60094-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-3094-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033094591",
"https://doi.org/10.1007/978-1-4612-3094-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1016/s1001-6058(06)60141-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039190519",
"https://doi.org/10.1016/s1001-6058(06)60141-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-75015-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019196658",
"https://doi.org/10.1007/978-3-642-75015-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-12-01",
"datePublishedReg": "2009-12-01",
"description": "The sparse grid collocation method is discussed to qualify the uncertainty of solute transport. The Karhunen-Loeve (KL) expansion is employed to decompose the log transformed hydraulic conductivity. The head, velocity and concentration fields are represented by the Lagrange polynomial expansion. A sparse grid collocation method is then used to reduce the original stochastic partial differential equations to a set of deterministic equations which is collocated at selected interpolation (collocation) points. The collocation points are constructed by the Smolyak algorithm. The accuracy, efficiency and convergence property of sparse grid collocation method are investigated by numerical experiments. The analysis shows that stochastic collocation strategy helps to decouple stochastic computations, and all the numerical computation is possible to be implemented by existing deterministic finite element codes. The proposed method provides an efficient way to evaluate the uncertainty of the solute transport in the heterogeneous media.",
"genre": "article",
"id": "sg:pub.10.1016/s1001-6058(08)60213-9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.4970361",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.4985369",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1046896",
"issn": [
"1001-6058",
"1878-0342"
],
"name": "Journal of Hydrodynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "21"
}
],
"keywords": [
"sparse grid collocation method",
"collocation method",
"original stochastic partial differential equations",
"stochastic partial differential equations",
"heterogeneous media",
"deterministic finite element codes",
"Lagrange polynomial expansions",
"partial differential equations",
"Karhunen-Loeve expansion",
"solute transport",
"differential equations",
"deterministic equations",
"Smolyak algorithm",
"collocation points",
"stochastic computation",
"convergence properties",
"collocation strategy",
"numerical experiments",
"numerical computations",
"polynomial expansion",
"interpolation points",
"concentration fields",
"equations",
"finite element code",
"computation",
"uncertainty",
"element code",
"efficient way",
"algorithm",
"point",
"velocity",
"expansion",
"hydraulic conductivity",
"field",
"transport",
"set",
"accuracy",
"properties",
"code",
"conductivity",
"medium",
"efficiency",
"experiments",
"way",
"analysis",
"logs",
"strategies",
"qualification",
"method",
"head"
],
"name": "Qualification of uncertainty for simulating solute transport in the heterogeneous media with sparse grid collocation method",
"pagination": "779-789",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1029517090"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1016/s1001-6058(08)60213-9"
]
}
],
"sameAs": [
"https://doi.org/10.1016/s1001-6058(08)60213-9",
"https://app.dimensions.ai/details/publication/pub.1029517090"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_489.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1016/s1001-6058(08)60213-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/s1001-6058(08)60213-9'
This table displays all metadata directly associated to this object as RDF triples.
147 TRIPLES
22 PREDICATES
81 URIs
67 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1016/s1001-6058(08)60213-9 | schema:about | anzsrc-for:09 |
2 | ″ | schema:author | N823d7576575e4e00a13619c74169e786 |
3 | ″ | schema:citation | sg:pub.10.1007/978-1-4612-3094-6 |
4 | ″ | ″ | sg:pub.10.1007/978-3-642-75015-1 |
5 | ″ | ″ | sg:pub.10.1007/s002110200401 |
6 | ″ | ″ | sg:pub.10.1016/s1001-6058(06)60141-8 |
7 | ″ | ″ | sg:pub.10.1016/s1001-6058(08)60068-2 |
8 | ″ | ″ | sg:pub.10.1016/s1001-6058(08)60069-4 |
9 | ″ | ″ | sg:pub.10.1016/s1001-6058(08)60094-3 |
10 | ″ | schema:datePublished | 2009-12-01 |
11 | ″ | schema:datePublishedReg | 2009-12-01 |
12 | ″ | schema:description | The sparse grid collocation method is discussed to qualify the uncertainty of solute transport. The Karhunen-Loeve (KL) expansion is employed to decompose the log transformed hydraulic conductivity. The head, velocity and concentration fields are represented by the Lagrange polynomial expansion. A sparse grid collocation method is then used to reduce the original stochastic partial differential equations to a set of deterministic equations which is collocated at selected interpolation (collocation) points. The collocation points are constructed by the Smolyak algorithm. The accuracy, efficiency and convergence property of sparse grid collocation method are investigated by numerical experiments. The analysis shows that stochastic collocation strategy helps to decouple stochastic computations, and all the numerical computation is possible to be implemented by existing deterministic finite element codes. The proposed method provides an efficient way to evaluate the uncertainty of the solute transport in the heterogeneous media. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N5b67697454b044c9844687ce870814a5 |
17 | ″ | ″ | N8af7c3b1773c457ead13423afbab0005 |
18 | ″ | ″ | sg:journal.1046896 |
19 | ″ | schema:keywords | Karhunen-Loeve expansion |
20 | ″ | ″ | Lagrange polynomial expansions |
21 | ″ | ″ | Smolyak algorithm |
22 | ″ | ″ | accuracy |
23 | ″ | ″ | algorithm |
24 | ″ | ″ | analysis |
25 | ″ | ″ | code |
26 | ″ | ″ | collocation method |
27 | ″ | ″ | collocation points |
28 | ″ | ″ | collocation strategy |
29 | ″ | ″ | computation |
30 | ″ | ″ | concentration fields |
31 | ″ | ″ | conductivity |
32 | ″ | ″ | convergence properties |
33 | ″ | ″ | deterministic equations |
34 | ″ | ″ | deterministic finite element codes |
35 | ″ | ″ | differential equations |
36 | ″ | ″ | efficiency |
37 | ″ | ″ | efficient way |
38 | ″ | ″ | element code |
39 | ″ | ″ | equations |
40 | ″ | ″ | expansion |
41 | ″ | ″ | experiments |
42 | ″ | ″ | field |
43 | ″ | ″ | finite element code |
44 | ″ | ″ | head |
45 | ″ | ″ | heterogeneous media |
46 | ″ | ″ | hydraulic conductivity |
47 | ″ | ″ | interpolation points |
48 | ″ | ″ | logs |
49 | ″ | ″ | medium |
50 | ″ | ″ | method |
51 | ″ | ″ | numerical computations |
52 | ″ | ″ | numerical experiments |
53 | ″ | ″ | original stochastic partial differential equations |
54 | ″ | ″ | partial differential equations |
55 | ″ | ″ | point |
56 | ″ | ″ | polynomial expansion |
57 | ″ | ″ | properties |
58 | ″ | ″ | qualification |
59 | ″ | ″ | set |
60 | ″ | ″ | solute transport |
61 | ″ | ″ | sparse grid collocation method |
62 | ″ | ″ | stochastic computation |
63 | ″ | ″ | stochastic partial differential equations |
64 | ″ | ″ | strategies |
65 | ″ | ″ | transport |
66 | ″ | ″ | uncertainty |
67 | ″ | ″ | velocity |
68 | ″ | ″ | way |
69 | ″ | schema:name | Qualification of uncertainty for simulating solute transport in the heterogeneous media with sparse grid collocation method |
70 | ″ | schema:pagination | 779-789 |
71 | ″ | schema:productId | N9363fb1f754f46dd886ac8c0e6a13794 |
72 | ″ | ″ | Ne78b1e841bb24d7a87890270f921edf1 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029517090 |
74 | ″ | ″ | https://doi.org/10.1016/s1001-6058(08)60213-9 |
75 | ″ | schema:sdDatePublished | 2022-05-10T09:58 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | Ne7ca8ae4f7a94e06b9e1163ae9c896a1 |
78 | ″ | schema:url | https://doi.org/10.1016/s1001-6058(08)60213-9 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | articles |
81 | ″ | rdf:type | schema:ScholarlyArticle |
82 | N5b67697454b044c9844687ce870814a5 | schema:issueNumber | 6 |
83 | ″ | rdf:type | schema:PublicationIssue |
84 | N823d7576575e4e00a13619c74169e786 | rdf:first | sg:person.013753244525.37 |
85 | ″ | rdf:rest | Nb1337a09755f43a89e127770cf3d82c7 |
86 | N8af7c3b1773c457ead13423afbab0005 | schema:volumeNumber | 21 |
87 | ″ | rdf:type | schema:PublicationVolume |
88 | N9363fb1f754f46dd886ac8c0e6a13794 | schema:name | doi |
89 | ″ | schema:value | 10.1016/s1001-6058(08)60213-9 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | Nb1337a09755f43a89e127770cf3d82c7 | rdf:first | sg:person.014731165631.01 |
92 | ″ | rdf:rest | rdf:nil |
93 | Ne78b1e841bb24d7a87890270f921edf1 | schema:name | dimensions_id |
94 | ″ | schema:value | pub.1029517090 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | Ne7ca8ae4f7a94e06b9e1163ae9c896a1 | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Engineering |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | sg:grant.4970361 | http://pending.schema.org/fundedItem | sg:pub.10.1016/s1001-6058(08)60213-9 |
102 | ″ | rdf:type | schema:MonetaryGrant |
103 | sg:grant.4985369 | http://pending.schema.org/fundedItem | sg:pub.10.1016/s1001-6058(08)60213-9 |
104 | ″ | rdf:type | schema:MonetaryGrant |
105 | sg:journal.1046896 | schema:issn | 1001-6058 |
106 | ″ | ″ | 1878-0342 |
107 | ″ | schema:name | Journal of Hydrodynamics |
108 | ″ | schema:publisher | Springer Nature |
109 | ″ | rdf:type | schema:Periodical |
110 | sg:person.013753244525.37 | schema:affiliation | grid-institutes:grid.42505.36 |
111 | ″ | schema:familyName | SHI |
112 | ″ | schema:givenName | Liang-sheng |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.014731165631.01 | schema:affiliation | grid-institutes:grid.49470.3e |
116 | ″ | schema:familyName | YANG |
117 | ″ | schema:givenName | Jin-zhong |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01 |
119 | ″ | rdf:type | schema:Person |
120 | sg:pub.10.1007/978-1-4612-3094-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033094591 |
121 | ″ | ″ | https://doi.org/10.1007/978-1-4612-3094-6 |
122 | ″ | rdf:type | schema:CreativeWork |
123 | sg:pub.10.1007/978-3-642-75015-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019196658 |
124 | ″ | ″ | https://doi.org/10.1007/978-3-642-75015-1 |
125 | ″ | rdf:type | schema:CreativeWork |
126 | sg:pub.10.1007/s002110200401 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041429159 |
127 | ″ | ″ | https://doi.org/10.1007/s002110200401 |
128 | ″ | rdf:type | schema:CreativeWork |
129 | sg:pub.10.1016/s1001-6058(06)60141-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039190519 |
130 | ″ | ″ | https://doi.org/10.1016/s1001-6058(06)60141-8 |
131 | ″ | rdf:type | schema:CreativeWork |
132 | sg:pub.10.1016/s1001-6058(08)60068-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033711651 |
133 | ″ | ″ | https://doi.org/10.1016/s1001-6058(08)60068-2 |
134 | ″ | rdf:type | schema:CreativeWork |
135 | sg:pub.10.1016/s1001-6058(08)60069-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000445624 |
136 | ″ | ″ | https://doi.org/10.1016/s1001-6058(08)60069-4 |
137 | ″ | rdf:type | schema:CreativeWork |
138 | sg:pub.10.1016/s1001-6058(08)60094-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039400580 |
139 | ″ | ″ | https://doi.org/10.1016/s1001-6058(08)60094-3 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | grid-institutes:grid.42505.36 | schema:alternateName | The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA |
142 | ″ | schema:name | State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China |
143 | ″ | ″ | The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA |
144 | ″ | rdf:type | schema:Organization |
145 | grid-institutes:grid.49470.3e | schema:alternateName | State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China |
146 | ″ | schema:name | State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China |
147 | ″ | rdf:type | schema:Organization |