A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-06

AUTHORS

Tristan G. Payne, Andrew D. Southam, Theodoros N. Arvanitis, Mark R. Viant

ABSTRACT

Direct-infusion electrospray-ionization Fourier transform ion cyclotron resonance mass spectrometry (DI ESI FT-ICR MS) is increasingly being utilized in metabolomics, including the high sensitivity selected ion monitoring (SIM)-stitching approach. Accurate signal quantification and the discrimination of real signals from noise remain major challenges for this approach, with both adversely affected by factors including ion suppression during electrospray, ion-ion interactions in the detector cell, and thermally-induced white noise. This is particularly problematic for complex mixture analysis where hundreds of metabolites are present near the noise level. Here we address relative signal quantification and noise discrimination issues in SIM-stitched DI ESI FT-ICR MS-based metabolomics. Using liver tissue, we first optimized the number of scans (n) acquired per SIM window to address the balance between quantification accuracy versus acquisition time (and thus sample throughput); a minimum of n = 5 is recommended. Secondly, we characterized and computationally-corrected an effect whereby an ion's intensity is dependent upon its location within a SIM window, exhibiting a 3-fold higher intensity at the high m/z end. This resulted in significantly improved quantification accuracy. Finally, we thoroughly characterized a three-stage filter to discriminate noise from real signals, which comprised a signal-to-noise-ratio (SNR) hard threshold, then a "replicate" filter (retaining only peaks in r-out-of-3 replicate analyses), and then a "sample" filter (retaining only peaks in >s% of biological samples). We document the benefits of three-stage filtering versus one- and two-stage filters, and show the importance of selecting filter parameters that balance the confidence that a signal is real versus the total number of peaks detected. More... »

PAGES

1087-1095

Identifiers

URI

http://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001

DOI

http://dx.doi.org/10.1016/j.jasms.2009.02.001

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045122736

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19269189


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flatfishes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fourier Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Payne", 
        "givenName": "Tristan G.", 
        "id": "sg:person.0726014466.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726014466.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Southam", 
        "givenName": "Andrew D.", 
        "id": "sg:person.0774127666.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774127666.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arvanitis", 
        "givenName": "Theodoros N.", 
        "id": "sg:person.01242750405.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242750405.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viant", 
        "givenName": "Mark R.", 
        "id": "sg:person.01140655554.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-4374-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001407545", 
          "https://doi.org/10.1007/978-1-4612-4374-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4374-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001407545", 
          "https://doi.org/10.1007/978-1-4612-4374-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0231(19990215)13:3<164::aid-rcm474>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002094369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/eri070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002933419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2006.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005514513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006306747", 
          "https://doi.org/10.1186/1471-2105-6-179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-005-4433-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006401643", 
          "https://doi.org/10.1007/s11306-005-4433-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-005-4433-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006401643", 
          "https://doi.org/10.1007/s11306-005-4433-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jms.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007843442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.3164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012338260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.toxlet.2007.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012836281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2007.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013053773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2006.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013607397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1044-0305(01)00333-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016680821", 
          "https://doi.org/10.1016/s1044-0305(01)00333-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2006.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017817607", 
          "https://doi.org/10.1016/j.jasms.2006.09.005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-008-0104-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019348710", 
          "https://doi.org/10.1007/s11306-008-0104-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021066196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b808986h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021488326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503955102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022000485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2005.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024023852", 
          "https://doi.org/10.1016/j.jasms.2005.11.024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2005.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024023852", 
          "https://doi.org/10.1016/j.jasms.2005.11.024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.106.080317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024370338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(95)00017-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024823678", 
          "https://doi.org/10.1016/1044-0305(95)00017-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(95)00017-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024823678", 
          "https://doi.org/10.1016/1044-0305(95)00017-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2004.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025000244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(92)87086-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025773063", 
          "https://doi.org/10.1016/1044-0305(92)87086-e"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(92)87086-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025773063", 
          "https://doi.org/10.1016/1044-0305(92)87086-e"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es034281x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026818092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es034281x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026818092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.2957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027624718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac071583z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030346535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac071583z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030346535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062446p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033780872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062446p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033780872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040689360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.20011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041830253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfi102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044444681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052350333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052350333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051437y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053369488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051437y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053369488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0301806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0301806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051495j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054997456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051495j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054997456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac50047a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055011478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac8014627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac8014627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es802198z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055515463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es802198z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055515463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/omi.2005.9.281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059303616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn.82.3.497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077111232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "Direct-infusion electrospray-ionization Fourier transform ion cyclotron resonance mass spectrometry (DI ESI FT-ICR MS) is increasingly being utilized in metabolomics, including the high sensitivity selected ion monitoring (SIM)-stitching approach. Accurate signal quantification and the discrimination of real signals from noise remain major challenges for this approach, with both adversely affected by factors including ion suppression during electrospray, ion-ion interactions in the detector cell, and thermally-induced white noise. This is particularly problematic for complex mixture analysis where hundreds of metabolites are present near the noise level. Here we address relative signal quantification and noise discrimination issues in SIM-stitched DI ESI FT-ICR MS-based metabolomics. Using liver tissue, we first optimized the number of scans (n) acquired per SIM window to address the balance between quantification accuracy versus acquisition time (and thus sample throughput); a minimum of n = 5 is recommended. Secondly, we characterized and computationally-corrected an effect whereby an ion's intensity is dependent upon its location within a SIM window, exhibiting a 3-fold higher intensity at the high m/z end. This resulted in significantly improved quantification accuracy. Finally, we thoroughly characterized a three-stage filter to discriminate noise from real signals, which comprised a signal-to-noise-ratio (SNR) hard threshold, then a \"replicate\" filter (retaining only peaks in r-out-of-3 replicate analyses), and then a \"sample\" filter (retaining only peaks in >s% of biological samples). We document the benefits of three-stage filtering versus one- and two-stage filters, and show the importance of selecting filter parameters that balance the confidence that a signal is real versus the total number of peaks detected.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1016/j.jasms.2009.02.001", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2756799", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100508", 
        "issn": [
          "1044-0305", 
          "1879-1123"
        ], 
        "name": "Journal of The American Society for Mass Spectrometry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data", 
    "pagination": "1087-1095", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d6ef560f40bca598a20bbfe04cfb2bf798a1a90c19b2abac1a7f8dd95773ff8c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19269189"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9010412"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1016/j.jasms.2009.02.001"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045122736"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1016/j.jasms.2009.02.001", 
      "https://app.dimensions.ai/details/publication/pub.1045122736"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1016/j.jasms.2009.02.001"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      76 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1016/j.jasms.2009.02.001 schema:about N4f063fe1acd844e5838be2785a05a4a5
2 N56063c1374de4b908bfa96e90b0576ee
3 N81584f26a6ac40b5a3b3be8a330cd2ca
4 Na952c57d24c74697abc44bf2fbafa4e7
5 Nb5fdffbe66bc44edad184e1754bd74ce
6 Ncf015f8efecc43a593934b1da05da1b5
7 Nd28a2c425c2347a7bca6e96881e8233b
8 Ne0e9d211ded743828a4922d3d9008418
9 Nfe7e1e6482284d60a57ba6a82956f5b2
10 anzsrc-for:03
11 anzsrc-for:0301
12 schema:author N26ec3a314bc94ed2ad8cf07aa127e0e5
13 schema:citation sg:pub.10.1007/978-1-4612-4374-8
14 sg:pub.10.1007/s11306-005-4433-6
15 sg:pub.10.1007/s11306-008-0104-8
16 sg:pub.10.1016/1044-0305(92)87086-e
17 sg:pub.10.1016/1044-0305(95)00017-8
18 sg:pub.10.1016/j.jasms.2005.11.024
19 sg:pub.10.1016/j.jasms.2006.09.005
20 sg:pub.10.1016/s1044-0305(01)00333-6
21 sg:pub.10.1186/1471-2105-6-179
22 https://doi.org/10.1002/(sici)1097-0231(19990215)13:3<164::aid-rcm474>3.0.co;2-l
23 https://doi.org/10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k
24 https://doi.org/10.1002/jms.121
25 https://doi.org/10.1002/mas.10008
26 https://doi.org/10.1002/mas.20011
27 https://doi.org/10.1002/rcm.1250
28 https://doi.org/10.1002/rcm.2957
29 https://doi.org/10.1002/rcm.3164
30 https://doi.org/10.1016/j.ab.2007.10.002
31 https://doi.org/10.1016/j.fuel.2006.08.029
32 https://doi.org/10.1016/j.tibtech.2006.10.006
33 https://doi.org/10.1016/j.toxlet.2007.05.021
34 https://doi.org/10.1016/j.trac.2004.11.021
35 https://doi.org/10.1021/ac0301806
36 https://doi.org/10.1021/ac051437y
37 https://doi.org/10.1021/ac051495j
38 https://doi.org/10.1021/ac062446p
39 https://doi.org/10.1021/ac071583z
40 https://doi.org/10.1021/ac50047a029
41 https://doi.org/10.1021/ac8014627
42 https://doi.org/10.1021/es034281x
43 https://doi.org/10.1021/es802198z
44 https://doi.org/10.1039/b808986h
45 https://doi.org/10.1073/pnas.0503955102
46 https://doi.org/10.1089/omi.2005.9.281
47 https://doi.org/10.1093/ajcn.82.3.497
48 https://doi.org/10.1093/jxb/eri070
49 https://doi.org/10.1093/toxsci/kfi102
50 https://doi.org/10.1104/pp.106.080317
51 schema:datePublished 2009-06
52 schema:datePublishedReg 2009-06-01
53 schema:description Direct-infusion electrospray-ionization Fourier transform ion cyclotron resonance mass spectrometry (DI ESI FT-ICR MS) is increasingly being utilized in metabolomics, including the high sensitivity selected ion monitoring (SIM)-stitching approach. Accurate signal quantification and the discrimination of real signals from noise remain major challenges for this approach, with both adversely affected by factors including ion suppression during electrospray, ion-ion interactions in the detector cell, and thermally-induced white noise. This is particularly problematic for complex mixture analysis where hundreds of metabolites are present near the noise level. Here we address relative signal quantification and noise discrimination issues in SIM-stitched DI ESI FT-ICR MS-based metabolomics. Using liver tissue, we first optimized the number of scans (n) acquired per SIM window to address the balance between quantification accuracy versus acquisition time (and thus sample throughput); a minimum of n = 5 is recommended. Secondly, we characterized and computationally-corrected an effect whereby an ion's intensity is dependent upon its location within a SIM window, exhibiting a 3-fold higher intensity at the high m/z end. This resulted in significantly improved quantification accuracy. Finally, we thoroughly characterized a three-stage filter to discriminate noise from real signals, which comprised a signal-to-noise-ratio (SNR) hard threshold, then a "replicate" filter (retaining only peaks in r-out-of-3 replicate analyses), and then a "sample" filter (retaining only peaks in >s% of biological samples). We document the benefits of three-stage filtering versus one- and two-stage filters, and show the importance of selecting filter parameters that balance the confidence that a signal is real versus the total number of peaks detected.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N13d9eaca573d4e16937e3e5b9766b20e
58 N2b15de5e022f4fca83a3ebba60c3e6cd
59 sg:journal.1100508
60 schema:name A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data
61 schema:pagination 1087-1095
62 schema:productId N4406c6e0828244e3a6dacca7d5e20162
63 N986c248bec3a403b9b7922710f416746
64 Ncf4f29d945774e90814543b01ca5305f
65 Nef30d8e18cba4873aef7cfd92c66e0d7
66 Nfbf61a204d714ae1aa25cd68e1492c78
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045122736
68 https://doi.org/10.1016/j.jasms.2009.02.001
69 schema:sdDatePublished 2019-04-10T19:54
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N3dd3c538a2e440ed9517400c4c1e10a0
72 schema:url http://link.springer.com/10.1016/j.jasms.2009.02.001
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N13d9eaca573d4e16937e3e5b9766b20e schema:volumeNumber 20
77 rdf:type schema:PublicationVolume
78 N14f659a80faa46998bfa3153e8c648c6 rdf:first sg:person.01140655554.38
79 rdf:rest rdf:nil
80 N26ec3a314bc94ed2ad8cf07aa127e0e5 rdf:first sg:person.0726014466.08
81 rdf:rest N33ed751696654b2e8408118eb14842ef
82 N2b15de5e022f4fca83a3ebba60c3e6cd schema:issueNumber 6
83 rdf:type schema:PublicationIssue
84 N33ed751696654b2e8408118eb14842ef rdf:first sg:person.0774127666.55
85 rdf:rest N550b421cabef4aa9ad5890093ba35fa0
86 N3dd3c538a2e440ed9517400c4c1e10a0 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N4406c6e0828244e3a6dacca7d5e20162 schema:name pubmed_id
89 schema:value 19269189
90 rdf:type schema:PropertyValue
91 N4f063fe1acd844e5838be2785a05a4a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Flatfishes
93 rdf:type schema:DefinedTerm
94 N550b421cabef4aa9ad5890093ba35fa0 rdf:first sg:person.01242750405.06
95 rdf:rest N14f659a80faa46998bfa3153e8c648c6
96 N56063c1374de4b908bfa96e90b0576ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Liver
98 rdf:type schema:DefinedTerm
99 N81584f26a6ac40b5a3b3be8a330cd2ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Models, Statistical
101 rdf:type schema:DefinedTerm
102 N986c248bec3a403b9b7922710f416746 schema:name doi
103 schema:value 10.1016/j.jasms.2009.02.001
104 rdf:type schema:PropertyValue
105 Na952c57d24c74697abc44bf2fbafa4e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Animals
107 rdf:type schema:DefinedTerm
108 Nb5fdffbe66bc44edad184e1754bd74ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Signal Processing, Computer-Assisted
110 rdf:type schema:DefinedTerm
111 Ncf015f8efecc43a593934b1da05da1b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Mass Spectrometry
113 rdf:type schema:DefinedTerm
114 Ncf4f29d945774e90814543b01ca5305f schema:name dimensions_id
115 schema:value pub.1045122736
116 rdf:type schema:PropertyValue
117 Nd28a2c425c2347a7bca6e96881e8233b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Fourier Analysis
119 rdf:type schema:DefinedTerm
120 Ne0e9d211ded743828a4922d3d9008418 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Metabolomics
122 rdf:type schema:DefinedTerm
123 Nef30d8e18cba4873aef7cfd92c66e0d7 schema:name nlm_unique_id
124 schema:value 9010412
125 rdf:type schema:PropertyValue
126 Nfbf61a204d714ae1aa25cd68e1492c78 schema:name readcube_id
127 schema:value d6ef560f40bca598a20bbfe04cfb2bf798a1a90c19b2abac1a7f8dd95773ff8c
128 rdf:type schema:PropertyValue
129 Nfe7e1e6482284d60a57ba6a82956f5b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Computer Simulation
131 rdf:type schema:DefinedTerm
132 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
133 schema:name Chemical Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
136 schema:name Analytical Chemistry
137 rdf:type schema:DefinedTerm
138 sg:grant.2756799 http://pending.schema.org/fundedItem sg:pub.10.1016/j.jasms.2009.02.001
139 rdf:type schema:MonetaryGrant
140 sg:journal.1100508 schema:issn 1044-0305
141 1879-1123
142 schema:name Journal of The American Society for Mass Spectrometry
143 rdf:type schema:Periodical
144 sg:person.01140655554.38 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
145 schema:familyName Viant
146 schema:givenName Mark R.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38
148 rdf:type schema:Person
149 sg:person.01242750405.06 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
150 schema:familyName Arvanitis
151 schema:givenName Theodoros N.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242750405.06
153 rdf:type schema:Person
154 sg:person.0726014466.08 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
155 schema:familyName Payne
156 schema:givenName Tristan G.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726014466.08
158 rdf:type schema:Person
159 sg:person.0774127666.55 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
160 schema:familyName Southam
161 schema:givenName Andrew D.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774127666.55
163 rdf:type schema:Person
164 sg:pub.10.1007/978-1-4612-4374-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001407545
165 https://doi.org/10.1007/978-1-4612-4374-8
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s11306-005-4433-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006401643
168 https://doi.org/10.1007/s11306-005-4433-6
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11306-008-0104-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019348710
171 https://doi.org/10.1007/s11306-008-0104-8
172 rdf:type schema:CreativeWork
173 sg:pub.10.1016/1044-0305(92)87086-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1025773063
174 https://doi.org/10.1016/1044-0305(92)87086-e
175 rdf:type schema:CreativeWork
176 sg:pub.10.1016/1044-0305(95)00017-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024823678
177 https://doi.org/10.1016/1044-0305(95)00017-8
178 rdf:type schema:CreativeWork
179 sg:pub.10.1016/j.jasms.2005.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024023852
180 https://doi.org/10.1016/j.jasms.2005.11.024
181 rdf:type schema:CreativeWork
182 sg:pub.10.1016/j.jasms.2006.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017817607
183 https://doi.org/10.1016/j.jasms.2006.09.005
184 rdf:type schema:CreativeWork
185 sg:pub.10.1016/s1044-0305(01)00333-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016680821
186 https://doi.org/10.1016/s1044-0305(01)00333-6
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/1471-2105-6-179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006306747
189 https://doi.org/10.1186/1471-2105-6-179
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/(sici)1097-0231(19990215)13:3<164::aid-rcm474>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1002094369
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1040689360
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1002/jms.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007843442
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/mas.10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052350333
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/mas.20011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041830253
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/rcm.1250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021066196
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/rcm.2957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027624718
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/rcm.3164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012338260
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.ab.2007.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013053773
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.fuel.2006.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013607397
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.tibtech.2006.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005514513
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.toxlet.2007.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012836281
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.trac.2004.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025000244
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/ac0301806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054994592
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/ac051437y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053369488
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/ac051495j schema:sameAs https://app.dimensions.ai/details/publication/pub.1054997456
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1021/ac062446p schema:sameAs https://app.dimensions.ai/details/publication/pub.1033780872
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1021/ac071583z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030346535
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1021/ac50047a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055011478
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1021/ac8014627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055070370
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1021/es034281x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026818092
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1021/es802198z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055515463
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1039/b808986h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021488326
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1073/pnas.0503955102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022000485
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1089/omi.2005.9.281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059303616
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/ajcn.82.3.497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077111232
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/jxb/eri070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002933419
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/toxsci/kfi102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444681
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1104/pp.106.080317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024370338
248 rdf:type schema:CreativeWork
249 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
250 schema:name School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
251 School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, United Kingdom
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...