A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-06

AUTHORS

Tristan G. Payne, Andrew D. Southam, Theodoros N. Arvanitis, Mark R. Viant

ABSTRACT

Direct-infusion electrospray-ionization Fourier transform ion cyclotron resonance mass spectrometry (DI ESI FT-ICR MS) is increasingly being utilized in metabolomics, including the high sensitivity selected ion monitoring (SIM)-stitching approach. Accurate signal quantification and the discrimination of real signals from noise remain major challenges for this approach, with both adversely affected by factors including ion suppression during electrospray, ion-ion interactions in the detector cell, and thermally-induced white noise. This is particularly problematic for complex mixture analysis where hundreds of metabolites are present near the noise level. Here we address relative signal quantification and noise discrimination issues in SIM-stitched DI ESI FT-ICR MS-based metabolomics. Using liver tissue, we first optimized the number of scans (n) acquired per SIM window to address the balance between quantification accuracy versus acquisition time (and thus sample throughput); a minimum of n = 5 is recommended. Secondly, we characterized and computationally-corrected an effect whereby an ion's intensity is dependent upon its location within a SIM window, exhibiting a 3-fold higher intensity at the high m/z end. This resulted in significantly improved quantification accuracy. Finally, we thoroughly characterized a three-stage filter to discriminate noise from real signals, which comprised a signal-to-noise-ratio (SNR) hard threshold, then a "replicate" filter (retaining only peaks in r-out-of-3 replicate analyses), and then a "sample" filter (retaining only peaks in >s% of biological samples). We document the benefits of three-stage filtering versus one- and two-stage filters, and show the importance of selecting filter parameters that balance the confidence that a signal is real versus the total number of peaks detected. More... »

PAGES

1087-1095

Identifiers

URI

http://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001

DOI

http://dx.doi.org/10.1016/j.jasms.2009.02.001

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045122736

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19269189


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flatfishes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fourier Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Payne", 
        "givenName": "Tristan G.", 
        "id": "sg:person.0726014466.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726014466.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Southam", 
        "givenName": "Andrew D.", 
        "id": "sg:person.0774127666.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774127666.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arvanitis", 
        "givenName": "Theodoros N.", 
        "id": "sg:person.01242750405.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242750405.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viant", 
        "givenName": "Mark R.", 
        "id": "sg:person.01140655554.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-4374-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001407545", 
          "https://doi.org/10.1007/978-1-4612-4374-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4374-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001407545", 
          "https://doi.org/10.1007/978-1-4612-4374-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0231(19990215)13:3<164::aid-rcm474>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002094369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/eri070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002933419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2006.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005514513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006306747", 
          "https://doi.org/10.1186/1471-2105-6-179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-005-4433-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006401643", 
          "https://doi.org/10.1007/s11306-005-4433-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-005-4433-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006401643", 
          "https://doi.org/10.1007/s11306-005-4433-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jms.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007843442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.3164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012338260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.toxlet.2007.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012836281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2007.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013053773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2006.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013607397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1044-0305(01)00333-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016680821", 
          "https://doi.org/10.1016/s1044-0305(01)00333-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2006.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017817607", 
          "https://doi.org/10.1016/j.jasms.2006.09.005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-008-0104-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019348710", 
          "https://doi.org/10.1007/s11306-008-0104-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021066196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b808986h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021488326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503955102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022000485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2005.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024023852", 
          "https://doi.org/10.1016/j.jasms.2005.11.024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2005.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024023852", 
          "https://doi.org/10.1016/j.jasms.2005.11.024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.106.080317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024370338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(95)00017-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024823678", 
          "https://doi.org/10.1016/1044-0305(95)00017-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(95)00017-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024823678", 
          "https://doi.org/10.1016/1044-0305(95)00017-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2004.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025000244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(92)87086-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025773063", 
          "https://doi.org/10.1016/1044-0305(92)87086-e"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(92)87086-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025773063", 
          "https://doi.org/10.1016/1044-0305(92)87086-e"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es034281x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026818092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es034281x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026818092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.2957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027624718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac071583z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030346535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac071583z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030346535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062446p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033780872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062446p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033780872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040689360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.20011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041830253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfi102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044444681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052350333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052350333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051437y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053369488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051437y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053369488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0301806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0301806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051495j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054997456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051495j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054997456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac50047a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055011478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac8014627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac8014627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es802198z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055515463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es802198z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055515463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/omi.2005.9.281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059303616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn.82.3.497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077111232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "Direct-infusion electrospray-ionization Fourier transform ion cyclotron resonance mass spectrometry (DI ESI FT-ICR MS) is increasingly being utilized in metabolomics, including the high sensitivity selected ion monitoring (SIM)-stitching approach. Accurate signal quantification and the discrimination of real signals from noise remain major challenges for this approach, with both adversely affected by factors including ion suppression during electrospray, ion-ion interactions in the detector cell, and thermally-induced white noise. This is particularly problematic for complex mixture analysis where hundreds of metabolites are present near the noise level. Here we address relative signal quantification and noise discrimination issues in SIM-stitched DI ESI FT-ICR MS-based metabolomics. Using liver tissue, we first optimized the number of scans (n) acquired per SIM window to address the balance between quantification accuracy versus acquisition time (and thus sample throughput); a minimum of n = 5 is recommended. Secondly, we characterized and computationally-corrected an effect whereby an ion's intensity is dependent upon its location within a SIM window, exhibiting a 3-fold higher intensity at the high m/z end. This resulted in significantly improved quantification accuracy. Finally, we thoroughly characterized a three-stage filter to discriminate noise from real signals, which comprised a signal-to-noise-ratio (SNR) hard threshold, then a \"replicate\" filter (retaining only peaks in r-out-of-3 replicate analyses), and then a \"sample\" filter (retaining only peaks in >s% of biological samples). We document the benefits of three-stage filtering versus one- and two-stage filters, and show the importance of selecting filter parameters that balance the confidence that a signal is real versus the total number of peaks detected.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1016/j.jasms.2009.02.001", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2756799", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100508", 
        "issn": [
          "1044-0305", 
          "1879-1123"
        ], 
        "name": "Journal of The American Society for Mass Spectrometry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data", 
    "pagination": "1087-1095", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d6ef560f40bca598a20bbfe04cfb2bf798a1a90c19b2abac1a7f8dd95773ff8c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19269189"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9010412"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1016/j.jasms.2009.02.001"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045122736"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1016/j.jasms.2009.02.001", 
      "https://app.dimensions.ai/details/publication/pub.1045122736"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1016/j.jasms.2009.02.001"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2009.02.001'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      76 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1016/j.jasms.2009.02.001 schema:about N27145d374a5b45c585e272bac3a16858
2 N561356f08f8341a19dd65c9b0b45c005
3 N8203ebe2f3ae4328845eaa36de583a1e
4 Na9ae2dde18b84fa894b24d94b4ab7749
5 Naa81d13d4dcb4c5f88b8272801fa2114
6 Nb33c2e220def48249a26f7546398722f
7 Nb6759d2aa85f4404989168e302660451
8 Ne71e3ba2df4c4745afd2bb78381c063b
9 Nf50c8d93feb7430cb18c59f1337d0021
10 anzsrc-for:03
11 anzsrc-for:0301
12 schema:author N756faffc83ff46b5a62bfc3c8edbb489
13 schema:citation sg:pub.10.1007/978-1-4612-4374-8
14 sg:pub.10.1007/s11306-005-4433-6
15 sg:pub.10.1007/s11306-008-0104-8
16 sg:pub.10.1016/1044-0305(92)87086-e
17 sg:pub.10.1016/1044-0305(95)00017-8
18 sg:pub.10.1016/j.jasms.2005.11.024
19 sg:pub.10.1016/j.jasms.2006.09.005
20 sg:pub.10.1016/s1044-0305(01)00333-6
21 sg:pub.10.1186/1471-2105-6-179
22 https://doi.org/10.1002/(sici)1097-0231(19990215)13:3<164::aid-rcm474>3.0.co;2-l
23 https://doi.org/10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k
24 https://doi.org/10.1002/jms.121
25 https://doi.org/10.1002/mas.10008
26 https://doi.org/10.1002/mas.20011
27 https://doi.org/10.1002/rcm.1250
28 https://doi.org/10.1002/rcm.2957
29 https://doi.org/10.1002/rcm.3164
30 https://doi.org/10.1016/j.ab.2007.10.002
31 https://doi.org/10.1016/j.fuel.2006.08.029
32 https://doi.org/10.1016/j.tibtech.2006.10.006
33 https://doi.org/10.1016/j.toxlet.2007.05.021
34 https://doi.org/10.1016/j.trac.2004.11.021
35 https://doi.org/10.1021/ac0301806
36 https://doi.org/10.1021/ac051437y
37 https://doi.org/10.1021/ac051495j
38 https://doi.org/10.1021/ac062446p
39 https://doi.org/10.1021/ac071583z
40 https://doi.org/10.1021/ac50047a029
41 https://doi.org/10.1021/ac8014627
42 https://doi.org/10.1021/es034281x
43 https://doi.org/10.1021/es802198z
44 https://doi.org/10.1039/b808986h
45 https://doi.org/10.1073/pnas.0503955102
46 https://doi.org/10.1089/omi.2005.9.281
47 https://doi.org/10.1093/ajcn.82.3.497
48 https://doi.org/10.1093/jxb/eri070
49 https://doi.org/10.1093/toxsci/kfi102
50 https://doi.org/10.1104/pp.106.080317
51 schema:datePublished 2009-06
52 schema:datePublishedReg 2009-06-01
53 schema:description Direct-infusion electrospray-ionization Fourier transform ion cyclotron resonance mass spectrometry (DI ESI FT-ICR MS) is increasingly being utilized in metabolomics, including the high sensitivity selected ion monitoring (SIM)-stitching approach. Accurate signal quantification and the discrimination of real signals from noise remain major challenges for this approach, with both adversely affected by factors including ion suppression during electrospray, ion-ion interactions in the detector cell, and thermally-induced white noise. This is particularly problematic for complex mixture analysis where hundreds of metabolites are present near the noise level. Here we address relative signal quantification and noise discrimination issues in SIM-stitched DI ESI FT-ICR MS-based metabolomics. Using liver tissue, we first optimized the number of scans (n) acquired per SIM window to address the balance between quantification accuracy versus acquisition time (and thus sample throughput); a minimum of n = 5 is recommended. Secondly, we characterized and computationally-corrected an effect whereby an ion's intensity is dependent upon its location within a SIM window, exhibiting a 3-fold higher intensity at the high m/z end. This resulted in significantly improved quantification accuracy. Finally, we thoroughly characterized a three-stage filter to discriminate noise from real signals, which comprised a signal-to-noise-ratio (SNR) hard threshold, then a "replicate" filter (retaining only peaks in r-out-of-3 replicate analyses), and then a "sample" filter (retaining only peaks in >s% of biological samples). We document the benefits of three-stage filtering versus one- and two-stage filters, and show the importance of selecting filter parameters that balance the confidence that a signal is real versus the total number of peaks detected.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N3700cb0ca6f048628c556ac240a26e6f
58 Nb2fc56dd087f4140bc31723be0ac266d
59 sg:journal.1100508
60 schema:name A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data
61 schema:pagination 1087-1095
62 schema:productId N226a7f8ebe02473ea3da83b4ac8b9ccc
63 N52ab3bdd96b94fac9cc7e0c6f95ec5bd
64 N7196018d123c4a5fa77aac3f090a19a9
65 Ncbe4fa0cbdb84442bab505e76eb2dc9b
66 Nd2f58b6e51f14e54a4a15445ac770879
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045122736
68 https://doi.org/10.1016/j.jasms.2009.02.001
69 schema:sdDatePublished 2019-04-10T19:54
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N7951ef492c5142c4ba75a29b4579c739
72 schema:url http://link.springer.com/10.1016/j.jasms.2009.02.001
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N226a7f8ebe02473ea3da83b4ac8b9ccc schema:name readcube_id
77 schema:value d6ef560f40bca598a20bbfe04cfb2bf798a1a90c19b2abac1a7f8dd95773ff8c
78 rdf:type schema:PropertyValue
79 N27145d374a5b45c585e272bac3a16858 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Mass Spectrometry
81 rdf:type schema:DefinedTerm
82 N3700cb0ca6f048628c556ac240a26e6f schema:issueNumber 6
83 rdf:type schema:PublicationIssue
84 N4581486f7cf848f4a9ca7f595fc53f21 rdf:first sg:person.01140655554.38
85 rdf:rest rdf:nil
86 N52ab3bdd96b94fac9cc7e0c6f95ec5bd schema:name pubmed_id
87 schema:value 19269189
88 rdf:type schema:PropertyValue
89 N561356f08f8341a19dd65c9b0b45c005 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Computer Simulation
91 rdf:type schema:DefinedTerm
92 N7196018d123c4a5fa77aac3f090a19a9 schema:name dimensions_id
93 schema:value pub.1045122736
94 rdf:type schema:PropertyValue
95 N756faffc83ff46b5a62bfc3c8edbb489 rdf:first sg:person.0726014466.08
96 rdf:rest Nfacc890411db4e54931fdb1a6d0f248f
97 N7951ef492c5142c4ba75a29b4579c739 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N8203ebe2f3ae4328845eaa36de583a1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Animals
101 rdf:type schema:DefinedTerm
102 Na9ae2dde18b84fa894b24d94b4ab7749 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Flatfishes
104 rdf:type schema:DefinedTerm
105 Naa81d13d4dcb4c5f88b8272801fa2114 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Models, Statistical
107 rdf:type schema:DefinedTerm
108 Nb2fc56dd087f4140bc31723be0ac266d schema:volumeNumber 20
109 rdf:type schema:PublicationVolume
110 Nb33c2e220def48249a26f7546398722f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Signal Processing, Computer-Assisted
112 rdf:type schema:DefinedTerm
113 Nb6759d2aa85f4404989168e302660451 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Liver
115 rdf:type schema:DefinedTerm
116 Nc3944a84ab3b435ea937fa5ec42ed82d rdf:first sg:person.01242750405.06
117 rdf:rest N4581486f7cf848f4a9ca7f595fc53f21
118 Ncbe4fa0cbdb84442bab505e76eb2dc9b schema:name doi
119 schema:value 10.1016/j.jasms.2009.02.001
120 rdf:type schema:PropertyValue
121 Nd2f58b6e51f14e54a4a15445ac770879 schema:name nlm_unique_id
122 schema:value 9010412
123 rdf:type schema:PropertyValue
124 Ne71e3ba2df4c4745afd2bb78381c063b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Fourier Analysis
126 rdf:type schema:DefinedTerm
127 Nf50c8d93feb7430cb18c59f1337d0021 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Metabolomics
129 rdf:type schema:DefinedTerm
130 Nfacc890411db4e54931fdb1a6d0f248f rdf:first sg:person.0774127666.55
131 rdf:rest Nc3944a84ab3b435ea937fa5ec42ed82d
132 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
133 schema:name Chemical Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
136 schema:name Analytical Chemistry
137 rdf:type schema:DefinedTerm
138 sg:grant.2756799 http://pending.schema.org/fundedItem sg:pub.10.1016/j.jasms.2009.02.001
139 rdf:type schema:MonetaryGrant
140 sg:journal.1100508 schema:issn 1044-0305
141 1879-1123
142 schema:name Journal of The American Society for Mass Spectrometry
143 rdf:type schema:Periodical
144 sg:person.01140655554.38 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
145 schema:familyName Viant
146 schema:givenName Mark R.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38
148 rdf:type schema:Person
149 sg:person.01242750405.06 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
150 schema:familyName Arvanitis
151 schema:givenName Theodoros N.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242750405.06
153 rdf:type schema:Person
154 sg:person.0726014466.08 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
155 schema:familyName Payne
156 schema:givenName Tristan G.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726014466.08
158 rdf:type schema:Person
159 sg:person.0774127666.55 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
160 schema:familyName Southam
161 schema:givenName Andrew D.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774127666.55
163 rdf:type schema:Person
164 sg:pub.10.1007/978-1-4612-4374-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001407545
165 https://doi.org/10.1007/978-1-4612-4374-8
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s11306-005-4433-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006401643
168 https://doi.org/10.1007/s11306-005-4433-6
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11306-008-0104-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019348710
171 https://doi.org/10.1007/s11306-008-0104-8
172 rdf:type schema:CreativeWork
173 sg:pub.10.1016/1044-0305(92)87086-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1025773063
174 https://doi.org/10.1016/1044-0305(92)87086-e
175 rdf:type schema:CreativeWork
176 sg:pub.10.1016/1044-0305(95)00017-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024823678
177 https://doi.org/10.1016/1044-0305(95)00017-8
178 rdf:type schema:CreativeWork
179 sg:pub.10.1016/j.jasms.2005.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024023852
180 https://doi.org/10.1016/j.jasms.2005.11.024
181 rdf:type schema:CreativeWork
182 sg:pub.10.1016/j.jasms.2006.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017817607
183 https://doi.org/10.1016/j.jasms.2006.09.005
184 rdf:type schema:CreativeWork
185 sg:pub.10.1016/s1044-0305(01)00333-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016680821
186 https://doi.org/10.1016/s1044-0305(01)00333-6
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/1471-2105-6-179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006306747
189 https://doi.org/10.1186/1471-2105-6-179
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/(sici)1097-0231(19990215)13:3<164::aid-rcm474>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1002094369
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1040689360
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1002/jms.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007843442
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/mas.10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052350333
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/mas.20011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041830253
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/rcm.1250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021066196
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/rcm.2957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027624718
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/rcm.3164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012338260
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.ab.2007.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013053773
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.fuel.2006.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013607397
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.tibtech.2006.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005514513
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.toxlet.2007.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012836281
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.trac.2004.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025000244
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/ac0301806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054994592
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/ac051437y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053369488
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/ac051495j schema:sameAs https://app.dimensions.ai/details/publication/pub.1054997456
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1021/ac062446p schema:sameAs https://app.dimensions.ai/details/publication/pub.1033780872
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1021/ac071583z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030346535
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1021/ac50047a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055011478
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1021/ac8014627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055070370
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1021/es034281x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026818092
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1021/es802198z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055515463
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1039/b808986h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021488326
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1073/pnas.0503955102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022000485
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1089/omi.2005.9.281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059303616
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/ajcn.82.3.497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077111232
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/jxb/eri070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002933419
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/toxsci/kfi102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444681
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1104/pp.106.080317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024370338
248 rdf:type schema:CreativeWork
249 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
250 schema:name School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
251 School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, United Kingdom
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...