Duty cycle and modulation efficiency of two-channel hadamard transform time-of-flight mass spectrometry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-11

AUTHORS

Oh Kyu Yoon, Ignacio A. Zuleta, Joel R. Kimmel, Matthew D. Robbins, Richard N. Zare

ABSTRACT

Hadamard transform time-of-flight mass spectrometry (HT-TOFMS) is based on the pseudorandom gating of ion packets into a time-of-flight mass-to-charge analyzer. In its typical implementation, the technique is able to monitor continuous ion sources with a 50% duty cycle, independent of all other figures of merit. Recently, we have demonstrated that the duty cycle can be extended to 100% using patterned, two-channel detection. Two-channel HT-TOFMS involves the simultaneous optimization of paired one-channel experiments and imposes more stringent conditions to achieve high-quality spectra. An ion modulation device, known as Bradbury-Nielson Gate (BNG), is central to HT-TOFMS. It is an ideal deflection plate, capable of transmitting or deflecting an ion beam according to a known binary sequence without changing the times-of-flight of the ions. Analytical equations are derived that accurately describe the ion modulation process of the BNG as confirmed by good agreement with SimIon simulations and ion beam imaging experiments. From these expressions, the duty cycle and ion modulation efficiency were calculated for various BNG parameters, ion beam characteristics, and detector dimensions, which permit the optimum conditions to be chosen for the two-channel experiment. We conclude that the outer detector should be three times the maximum deflection angle to detect all deflected ions (100% duty cycle) and that the difference between the modulated ion counts in the sequence elements 0 and 1 should be maximized to achieve high modulation efficiency. This condition is best achieved by tight focusing of the ion beam in the center of the inner detector. When both channels are optimized, the two-channel advantage can be exploited to achieve a further improvement over a single-channel experiment. More... »

PAGES

1888-1901

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025

DOI

http://dx.doi.org/10.1016/j.jasms.2005.07.025

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024582689

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16198595


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reserpine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Mass, Electrospray Ionization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Oh Kyu", 
        "id": "sg:person.01354035705.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354035705.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuleta", 
        "givenName": "Ignacio A.", 
        "id": "sg:person.01311504623.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311504623.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimmel", 
        "givenName": "Joel R.", 
        "id": "sg:person.0734637406.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734637406.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robbins", 
        "givenName": "Matthew D.", 
        "id": "sg:person.01237607305.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237607305.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zare", 
        "givenName": "Richard N.", 
        "id": "sg:person.010075246350.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1387-3806(00)00305-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002575333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200410152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004418424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200461240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012345101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027462080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200390047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028803256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2005.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049811243", 
          "https://doi.org/10.1016/j.jasms.2005.02.022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01341601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052216633", 
          "https://doi.org/10.1007/bf01341601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00073a022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054970229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1150456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057679013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1416109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057704487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.49.388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060448796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.49.388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060448796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-11", 
    "datePublishedReg": "2005-11-01", 
    "description": "Hadamard transform time-of-flight mass spectrometry (HT-TOFMS) is based on the pseudorandom gating of ion packets into a time-of-flight mass-to-charge analyzer. In its typical implementation, the technique is able to monitor continuous ion sources with a 50% duty cycle, independent of all other figures of merit. Recently, we have demonstrated that the duty cycle can be extended to 100% using patterned, two-channel detection. Two-channel HT-TOFMS involves the simultaneous optimization of paired one-channel experiments and imposes more stringent conditions to achieve high-quality spectra. An ion modulation device, known as Bradbury-Nielson Gate (BNG), is central to HT-TOFMS. It is an ideal deflection plate, capable of transmitting or deflecting an ion beam according to a known binary sequence without changing the times-of-flight of the ions. Analytical equations are derived that accurately describe the ion modulation process of the BNG as confirmed by good agreement with SimIon simulations and ion beam imaging experiments. From these expressions, the duty cycle and ion modulation efficiency were calculated for various BNG parameters, ion beam characteristics, and detector dimensions, which permit the optimum conditions to be chosen for the two-channel experiment. We conclude that the outer detector should be three times the maximum deflection angle to detect all deflected ions (100% duty cycle) and that the difference between the modulated ion counts in the sequence elements 0 and 1 should be maximized to achieve high modulation efficiency. This condition is best achieved by tight focusing of the ion beam in the center of the inner detector. When both channels are optimized, the two-channel advantage can be exploited to achieve a further improvement over a single-channel experiment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1016/j.jasms.2005.07.025", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1100508", 
        "issn": [
          "1044-0305", 
          "1879-1123"
        ], 
        "name": "Journal of The American Society for Mass Spectrometry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Duty cycle and modulation efficiency of two-channel hadamard transform time-of-flight mass spectrometry", 
    "pagination": "1888-1901", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "751ca2d207637aab498b9afc0a3c0832f7d4c36bf36fbabf3afde915b53a67bc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16198595"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9010412"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1016/j.jasms.2005.07.025"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024582689"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1016/j.jasms.2005.07.025", 
      "https://app.dimensions.ai/details/publication/pub.1024582689"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1016/j.jasms.2005.07.025"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      47 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1016/j.jasms.2005.07.025 schema:about N01a77442969e4598bb1ef9468de1fe02
2 N12fc0e86396e4cdba3e0966a7c835508
3 N643e60c8e0264c888730b9592654b2ad
4 Na37da63ca9bb4623b350db3dbdfa8b90
5 Nc7d5d05e18f2451a95ccae98ecdead97
6 Ne2bfe334b42c48c1ae09903eecd9e0ea
7 Nf7795a90dde64363a9a89b83ff8e5a30
8 anzsrc-for:02
9 anzsrc-for:0299
10 schema:author N7f757a95724f40d3a9ccef2aeb97f207
11 schema:citation sg:pub.10.1007/bf01341601
12 sg:pub.10.1016/j.jasms.2005.02.022
13 https://doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e
14 https://doi.org/10.1002/anie.200390047
15 https://doi.org/10.1002/anie.200461240
16 https://doi.org/10.1002/elps.200410152
17 https://doi.org/10.1016/s1387-3806(00)00305-5
18 https://doi.org/10.1021/ac00073a022
19 https://doi.org/10.1063/1.1150456
20 https://doi.org/10.1063/1.1416109
21 https://doi.org/10.1103/physrev.49.388
22 schema:datePublished 2005-11
23 schema:datePublishedReg 2005-11-01
24 schema:description Hadamard transform time-of-flight mass spectrometry (HT-TOFMS) is based on the pseudorandom gating of ion packets into a time-of-flight mass-to-charge analyzer. In its typical implementation, the technique is able to monitor continuous ion sources with a 50% duty cycle, independent of all other figures of merit. Recently, we have demonstrated that the duty cycle can be extended to 100% using patterned, two-channel detection. Two-channel HT-TOFMS involves the simultaneous optimization of paired one-channel experiments and imposes more stringent conditions to achieve high-quality spectra. An ion modulation device, known as Bradbury-Nielson Gate (BNG), is central to HT-TOFMS. It is an ideal deflection plate, capable of transmitting or deflecting an ion beam according to a known binary sequence without changing the times-of-flight of the ions. Analytical equations are derived that accurately describe the ion modulation process of the BNG as confirmed by good agreement with SimIon simulations and ion beam imaging experiments. From these expressions, the duty cycle and ion modulation efficiency were calculated for various BNG parameters, ion beam characteristics, and detector dimensions, which permit the optimum conditions to be chosen for the two-channel experiment. We conclude that the outer detector should be three times the maximum deflection angle to detect all deflected ions (100% duty cycle) and that the difference between the modulated ion counts in the sequence elements 0 and 1 should be maximized to achieve high modulation efficiency. This condition is best achieved by tight focusing of the ion beam in the center of the inner detector. When both channels are optimized, the two-channel advantage can be exploited to achieve a further improvement over a single-channel experiment.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N41ef2712325c460a94f6826104ab47bb
29 Nea9c6e27585345fd91175facd8058f29
30 sg:journal.1100508
31 schema:name Duty cycle and modulation efficiency of two-channel hadamard transform time-of-flight mass spectrometry
32 schema:pagination 1888-1901
33 schema:productId N1d9beef73a604d61aebbe2500572946d
34 N3255281b037f4b698ae5b7192dac8796
35 Na7f00220ac3344b5ad45fdae638282e1
36 Nbb27b50e35614fd5bf93829302a38d9b
37 Nef9704dd29a040f593c2b20b0de930f0
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024582689
39 https://doi.org/10.1016/j.jasms.2005.07.025
40 schema:sdDatePublished 2019-04-10T14:06
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Na3a4dc327fca4d37b8bad474ca4d71fa
43 schema:url http://link.springer.com/10.1016/j.jasms.2005.07.025
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N01a77442969e4598bb1ef9468de1fe02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
48 schema:name Reserpine
49 rdf:type schema:DefinedTerm
50 N12fc0e86396e4cdba3e0966a7c835508 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Algorithms
52 rdf:type schema:DefinedTerm
53 N1d9beef73a604d61aebbe2500572946d schema:name readcube_id
54 schema:value 751ca2d207637aab498b9afc0a3c0832f7d4c36bf36fbabf3afde915b53a67bc
55 rdf:type schema:PropertyValue
56 N1e6cdd4d5e214651b16c7b89e8c04797 rdf:first sg:person.01311504623.82
57 rdf:rest N7b97aff5853e44b39f8a0c30ec5095ea
58 N2eeb36ab340e48178386d2979c1baeba rdf:first sg:person.01237607305.35
59 rdf:rest N58efdc611e4b4c4dbe99246611542f3e
60 N3255281b037f4b698ae5b7192dac8796 schema:name dimensions_id
61 schema:value pub.1024582689
62 rdf:type schema:PropertyValue
63 N41ef2712325c460a94f6826104ab47bb schema:volumeNumber 16
64 rdf:type schema:PublicationVolume
65 N58efdc611e4b4c4dbe99246611542f3e rdf:first sg:person.010075246350.09
66 rdf:rest rdf:nil
67 N643e60c8e0264c888730b9592654b2ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Spectrometry, Mass, Electrospray Ionization
69 rdf:type schema:DefinedTerm
70 N7b97aff5853e44b39f8a0c30ec5095ea rdf:first sg:person.0734637406.10
71 rdf:rest N2eeb36ab340e48178386d2979c1baeba
72 N7f757a95724f40d3a9ccef2aeb97f207 rdf:first sg:person.01354035705.11
73 rdf:rest N1e6cdd4d5e214651b16c7b89e8c04797
74 Na37da63ca9bb4623b350db3dbdfa8b90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Signal Processing, Computer-Assisted
76 rdf:type schema:DefinedTerm
77 Na3a4dc327fca4d37b8bad474ca4d71fa schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Na7f00220ac3344b5ad45fdae638282e1 schema:name doi
80 schema:value 10.1016/j.jasms.2005.07.025
81 rdf:type schema:PropertyValue
82 Nbb27b50e35614fd5bf93829302a38d9b schema:name nlm_unique_id
83 schema:value 9010412
84 rdf:type schema:PropertyValue
85 Nc7d5d05e18f2451a95ccae98ecdead97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Models, Chemical
87 rdf:type schema:DefinedTerm
88 Ne2bfe334b42c48c1ae09903eecd9e0ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Computer Simulation
90 rdf:type schema:DefinedTerm
91 Nea9c6e27585345fd91175facd8058f29 schema:issueNumber 11
92 rdf:type schema:PublicationIssue
93 Nef9704dd29a040f593c2b20b0de930f0 schema:name pubmed_id
94 schema:value 16198595
95 rdf:type schema:PropertyValue
96 Nf7795a90dde64363a9a89b83ff8e5a30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
98 rdf:type schema:DefinedTerm
99 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
103 schema:name Other Physical Sciences
104 rdf:type schema:DefinedTerm
105 sg:journal.1100508 schema:issn 1044-0305
106 1879-1123
107 schema:name Journal of The American Society for Mass Spectrometry
108 rdf:type schema:Periodical
109 sg:person.010075246350.09 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
110 schema:familyName Zare
111 schema:givenName Richard N.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09
113 rdf:type schema:Person
114 sg:person.01237607305.35 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
115 schema:familyName Robbins
116 schema:givenName Matthew D.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237607305.35
118 rdf:type schema:Person
119 sg:person.01311504623.82 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
120 schema:familyName Zuleta
121 schema:givenName Ignacio A.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311504623.82
123 rdf:type schema:Person
124 sg:person.01354035705.11 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
125 schema:familyName Yoon
126 schema:givenName Oh Kyu
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354035705.11
128 rdf:type schema:Person
129 sg:person.0734637406.10 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
130 schema:familyName Kimmel
131 schema:givenName Joel R.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734637406.10
133 rdf:type schema:Person
134 sg:pub.10.1007/bf01341601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052216633
135 https://doi.org/10.1007/bf01341601
136 rdf:type schema:CreativeWork
137 sg:pub.10.1016/j.jasms.2005.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049811243
138 https://doi.org/10.1016/j.jasms.2005.02.022
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1027462080
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/anie.200390047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028803256
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/anie.200461240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012345101
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/elps.200410152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004418424
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s1387-3806(00)00305-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002575333
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/ac00073a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054970229
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.1150456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057679013
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.1416109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057704487
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrev.49.388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060448796
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
159 schema:name Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...