Duty cycle and modulation efficiency of two-channel hadamard transform time-of-flight mass spectrometry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-11

AUTHORS

Oh Kyu Yoon, Ignacio A. Zuleta, Joel R. Kimmel, Matthew D. Robbins, Richard N. Zare

ABSTRACT

Hadamard transform time-of-flight mass spectrometry (HT-TOFMS) is based on the pseudorandom gating of ion packets into a time-of-flight mass-to-charge analyzer. In its typical implementation, the technique is able to monitor continuous ion sources with a 50% duty cycle, independent of all other figures of merit. Recently, we have demonstrated that the duty cycle can be extended to 100% using patterned, two-channel detection. Two-channel HT-TOFMS involves the simultaneous optimization of paired one-channel experiments and imposes more stringent conditions to achieve high-quality spectra. An ion modulation device, known as Bradbury-Nielson Gate (BNG), is central to HT-TOFMS. It is an ideal deflection plate, capable of transmitting or deflecting an ion beam according to a known binary sequence without changing the times-of-flight of the ions. Analytical equations are derived that accurately describe the ion modulation process of the BNG as confirmed by good agreement with SimIon simulations and ion beam imaging experiments. From these expressions, the duty cycle and ion modulation efficiency were calculated for various BNG parameters, ion beam characteristics, and detector dimensions, which permit the optimum conditions to be chosen for the two-channel experiment. We conclude that the outer detector should be three times the maximum deflection angle to detect all deflected ions (100% duty cycle) and that the difference between the modulated ion counts in the sequence elements 0 and 1 should be maximized to achieve high modulation efficiency. This condition is best achieved by tight focusing of the ion beam in the center of the inner detector. When both channels are optimized, the two-channel advantage can be exploited to achieve a further improvement over a single-channel experiment. More... »

PAGES

1888-1901

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025

DOI

http://dx.doi.org/10.1016/j.jasms.2005.07.025

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024582689

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16198595


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reserpine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Mass, Electrospray Ionization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Oh Kyu", 
        "id": "sg:person.01354035705.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354035705.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuleta", 
        "givenName": "Ignacio A.", 
        "id": "sg:person.01311504623.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311504623.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimmel", 
        "givenName": "Joel R.", 
        "id": "sg:person.0734637406.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734637406.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robbins", 
        "givenName": "Matthew D.", 
        "id": "sg:person.01237607305.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237607305.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zare", 
        "givenName": "Richard N.", 
        "id": "sg:person.010075246350.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1387-3806(00)00305-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002575333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200410152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004418424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200461240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012345101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027462080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200390047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028803256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2005.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049811243", 
          "https://doi.org/10.1016/j.jasms.2005.02.022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01341601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052216633", 
          "https://doi.org/10.1007/bf01341601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00073a022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054970229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1150456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057679013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1416109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057704487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.49.388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060448796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.49.388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060448796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-11", 
    "datePublishedReg": "2005-11-01", 
    "description": "Hadamard transform time-of-flight mass spectrometry (HT-TOFMS) is based on the pseudorandom gating of ion packets into a time-of-flight mass-to-charge analyzer. In its typical implementation, the technique is able to monitor continuous ion sources with a 50% duty cycle, independent of all other figures of merit. Recently, we have demonstrated that the duty cycle can be extended to 100% using patterned, two-channel detection. Two-channel HT-TOFMS involves the simultaneous optimization of paired one-channel experiments and imposes more stringent conditions to achieve high-quality spectra. An ion modulation device, known as Bradbury-Nielson Gate (BNG), is central to HT-TOFMS. It is an ideal deflection plate, capable of transmitting or deflecting an ion beam according to a known binary sequence without changing the times-of-flight of the ions. Analytical equations are derived that accurately describe the ion modulation process of the BNG as confirmed by good agreement with SimIon simulations and ion beam imaging experiments. From these expressions, the duty cycle and ion modulation efficiency were calculated for various BNG parameters, ion beam characteristics, and detector dimensions, which permit the optimum conditions to be chosen for the two-channel experiment. We conclude that the outer detector should be three times the maximum deflection angle to detect all deflected ions (100% duty cycle) and that the difference between the modulated ion counts in the sequence elements 0 and 1 should be maximized to achieve high modulation efficiency. This condition is best achieved by tight focusing of the ion beam in the center of the inner detector. When both channels are optimized, the two-channel advantage can be exploited to achieve a further improvement over a single-channel experiment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1016/j.jasms.2005.07.025", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1100508", 
        "issn": [
          "1044-0305", 
          "1879-1123"
        ], 
        "name": "Journal of The American Society for Mass Spectrometry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Duty cycle and modulation efficiency of two-channel hadamard transform time-of-flight mass spectrometry", 
    "pagination": "1888-1901", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "751ca2d207637aab498b9afc0a3c0832f7d4c36bf36fbabf3afde915b53a67bc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16198595"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9010412"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1016/j.jasms.2005.07.025"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024582689"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1016/j.jasms.2005.07.025", 
      "https://app.dimensions.ai/details/publication/pub.1024582689"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1016/j.jasms.2005.07.025"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/j.jasms.2005.07.025'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      47 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1016/j.jasms.2005.07.025 schema:about N00c988227ce248629498547e13f95873
2 N8dfeb55b1fe94015b971c33bee5939f8
3 N90a01db696da49508329969b5343b496
4 Na3ebd5fa699a4a0d82f3bfa395856bf8
5 Nc88604209cc047b8ba578fd6474c6337
6 Ne67446898a664dfb8864d43fad05bca4
7 Nf0123784796f4dc0a371e227386ac517
8 anzsrc-for:02
9 anzsrc-for:0299
10 schema:author Ncb6647dd29504b03b607559ea350228e
11 schema:citation sg:pub.10.1007/bf01341601
12 sg:pub.10.1016/j.jasms.2005.02.022
13 https://doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e
14 https://doi.org/10.1002/anie.200390047
15 https://doi.org/10.1002/anie.200461240
16 https://doi.org/10.1002/elps.200410152
17 https://doi.org/10.1016/s1387-3806(00)00305-5
18 https://doi.org/10.1021/ac00073a022
19 https://doi.org/10.1063/1.1150456
20 https://doi.org/10.1063/1.1416109
21 https://doi.org/10.1103/physrev.49.388
22 schema:datePublished 2005-11
23 schema:datePublishedReg 2005-11-01
24 schema:description Hadamard transform time-of-flight mass spectrometry (HT-TOFMS) is based on the pseudorandom gating of ion packets into a time-of-flight mass-to-charge analyzer. In its typical implementation, the technique is able to monitor continuous ion sources with a 50% duty cycle, independent of all other figures of merit. Recently, we have demonstrated that the duty cycle can be extended to 100% using patterned, two-channel detection. Two-channel HT-TOFMS involves the simultaneous optimization of paired one-channel experiments and imposes more stringent conditions to achieve high-quality spectra. An ion modulation device, known as Bradbury-Nielson Gate (BNG), is central to HT-TOFMS. It is an ideal deflection plate, capable of transmitting or deflecting an ion beam according to a known binary sequence without changing the times-of-flight of the ions. Analytical equations are derived that accurately describe the ion modulation process of the BNG as confirmed by good agreement with SimIon simulations and ion beam imaging experiments. From these expressions, the duty cycle and ion modulation efficiency were calculated for various BNG parameters, ion beam characteristics, and detector dimensions, which permit the optimum conditions to be chosen for the two-channel experiment. We conclude that the outer detector should be three times the maximum deflection angle to detect all deflected ions (100% duty cycle) and that the difference between the modulated ion counts in the sequence elements 0 and 1 should be maximized to achieve high modulation efficiency. This condition is best achieved by tight focusing of the ion beam in the center of the inner detector. When both channels are optimized, the two-channel advantage can be exploited to achieve a further improvement over a single-channel experiment.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N4a3081006ed1428aa9b3b2ed6f66f53a
29 N9806ce9401f8405986b15cd2b2062815
30 sg:journal.1100508
31 schema:name Duty cycle and modulation efficiency of two-channel hadamard transform time-of-flight mass spectrometry
32 schema:pagination 1888-1901
33 schema:productId N0dffabeaa85444b6aa20d9e40baf48ad
34 N5cac2ba1024043a18cd9daad947af8ee
35 N8a141d5477fe4f1091b1e53594f51769
36 Nbde3c9e4e0834aa0bd8184ae98c097ca
37 Nbffeba0c13164d31bf28f9394b331bd6
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024582689
39 https://doi.org/10.1016/j.jasms.2005.07.025
40 schema:sdDatePublished 2019-04-10T14:06
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N93309a70bca24e1c84743580dab7cdbc
43 schema:url http://link.springer.com/10.1016/j.jasms.2005.07.025
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N00c988227ce248629498547e13f95873 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
48 schema:name Algorithms
49 rdf:type schema:DefinedTerm
50 N0dffabeaa85444b6aa20d9e40baf48ad schema:name nlm_unique_id
51 schema:value 9010412
52 rdf:type schema:PropertyValue
53 N4a3081006ed1428aa9b3b2ed6f66f53a schema:volumeNumber 16
54 rdf:type schema:PublicationVolume
55 N5cac2ba1024043a18cd9daad947af8ee schema:name doi
56 schema:value 10.1016/j.jasms.2005.07.025
57 rdf:type schema:PropertyValue
58 N85e3da0f6b384b039ddf9722c88bd63c rdf:first sg:person.01237607305.35
59 rdf:rest Nc98a19551ef941cda85fe99ad1644000
60 N8a141d5477fe4f1091b1e53594f51769 schema:name pubmed_id
61 schema:value 16198595
62 rdf:type schema:PropertyValue
63 N8dfeb55b1fe94015b971c33bee5939f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Spectrometry, Mass, Electrospray Ionization
65 rdf:type schema:DefinedTerm
66 N90a01db696da49508329969b5343b496 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Reserpine
68 rdf:type schema:DefinedTerm
69 N93309a70bca24e1c84743580dab7cdbc schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N9806ce9401f8405986b15cd2b2062815 schema:issueNumber 11
72 rdf:type schema:PublicationIssue
73 Na3ebd5fa699a4a0d82f3bfa395856bf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Models, Chemical
75 rdf:type schema:DefinedTerm
76 Nbde3c9e4e0834aa0bd8184ae98c097ca schema:name readcube_id
77 schema:value 751ca2d207637aab498b9afc0a3c0832f7d4c36bf36fbabf3afde915b53a67bc
78 rdf:type schema:PropertyValue
79 Nbffeba0c13164d31bf28f9394b331bd6 schema:name dimensions_id
80 schema:value pub.1024582689
81 rdf:type schema:PropertyValue
82 Nc1a1ad35ff184e8089a398ad9c9be603 rdf:first sg:person.0734637406.10
83 rdf:rest N85e3da0f6b384b039ddf9722c88bd63c
84 Nc88604209cc047b8ba578fd6474c6337 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Computer Simulation
86 rdf:type schema:DefinedTerm
87 Nc98a19551ef941cda85fe99ad1644000 rdf:first sg:person.010075246350.09
88 rdf:rest rdf:nil
89 Ncb6647dd29504b03b607559ea350228e rdf:first sg:person.01354035705.11
90 rdf:rest Ndfb1e15444f64b79acf305c9e5d8b270
91 Ndfb1e15444f64b79acf305c9e5d8b270 rdf:first sg:person.01311504623.82
92 rdf:rest Nc1a1ad35ff184e8089a398ad9c9be603
93 Ne67446898a664dfb8864d43fad05bca4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Signal Processing, Computer-Assisted
95 rdf:type schema:DefinedTerm
96 Nf0123784796f4dc0a371e227386ac517 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
98 rdf:type schema:DefinedTerm
99 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
103 schema:name Other Physical Sciences
104 rdf:type schema:DefinedTerm
105 sg:journal.1100508 schema:issn 1044-0305
106 1879-1123
107 schema:name Journal of The American Society for Mass Spectrometry
108 rdf:type schema:Periodical
109 sg:person.010075246350.09 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
110 schema:familyName Zare
111 schema:givenName Richard N.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09
113 rdf:type schema:Person
114 sg:person.01237607305.35 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
115 schema:familyName Robbins
116 schema:givenName Matthew D.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237607305.35
118 rdf:type schema:Person
119 sg:person.01311504623.82 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
120 schema:familyName Zuleta
121 schema:givenName Ignacio A.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311504623.82
123 rdf:type schema:Person
124 sg:person.01354035705.11 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
125 schema:familyName Yoon
126 schema:givenName Oh Kyu
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354035705.11
128 rdf:type schema:Person
129 sg:person.0734637406.10 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
130 schema:familyName Kimmel
131 schema:givenName Joel R.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734637406.10
133 rdf:type schema:Person
134 sg:pub.10.1007/bf01341601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052216633
135 https://doi.org/10.1007/bf01341601
136 rdf:type schema:CreativeWork
137 sg:pub.10.1016/j.jasms.2005.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049811243
138 https://doi.org/10.1016/j.jasms.2005.02.022
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1027462080
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/anie.200390047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028803256
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/anie.200461240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012345101
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/elps.200410152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004418424
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s1387-3806(00)00305-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002575333
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/ac00073a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054970229
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.1150456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057679013
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.1416109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057704487
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrev.49.388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060448796
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
159 schema:name Department of Chemistry, Stanford University, Room 113, S. G. Mudd Bldg., 94305-5080, Stanford, CA, USA
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...