Ontology type: schema:ScholarlyArticle Open Access: True
2013-06
AUTHORSA.A. Farghali, M. Bahgat, A. Enaiet Allah, M.H. Khedr
ABSTRACTVarious morphologies of CuO nanostructures (oval, cluster, leaves, small rod, porus nanosheets) have been synthesized by novel simple method using microwave radiation. The produced CuO nanostructures were characterized by X-ray diffraction analysis technique (XRD), transmission electron microscopy (TEM), surface area analyzer (BET) and energy dispersive spectroscopy (EDS). The ability of CuO nanostructures as adsorbent was investigated for adsorptive removal of Pb(II) ions from aqueous solutions. Various physico–chemical parameters such as pH, initial metal ion concentration, and equilibrium contact time were studied. The optimum solution pH for adsorption of Pb(II) from aqueous solutions was found to be 6.5 and the optimum contact time was found to be 4 h. The adsorption isotherms were obtained using concentrations of the metal ions ranging from 100 to 300 mg/l. The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and Freundlich adsorption isotherms. The maximum capacity of oval, cluster, leaves, small rod and porus nanosheets CuO nanostructures for Pb2+ are 125, 116, 117, 120 and 115 mg/g. This study revealed that CuO nano structures was an effective adsorbent for removal of Pb(II) ions from aqueous solutions. More... »
PAGES61-71
http://scigraph.springernature.com/pub.10.1016/j.bjbas.2013.01.001
DOIhttp://dx.doi.org/10.1016/j.bjbas.2013.01.001
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1050705037
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt",
"id": "http://www.grid.ac/institutes/grid.411662.6",
"name": [
"Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt"
],
"type": "Organization"
},
"familyName": "Farghali",
"givenName": "A.A.",
"id": "sg:person.012502366765.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502366765.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Central Metallurgical Researches and Development Institute (CMRDI), Helwan, Egypt",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Central Metallurgical Researches and Development Institute (CMRDI), Helwan, Egypt"
],
"type": "Organization"
},
"familyName": "Bahgat",
"givenName": "M.",
"id": "sg:person.011313225416.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313225416.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt",
"id": "http://www.grid.ac/institutes/grid.411662.6",
"name": [
"Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt"
],
"type": "Organization"
},
"familyName": "Allah",
"givenName": "A. Enaiet",
"id": "sg:person.013352523011.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352523011.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt",
"id": "http://www.grid.ac/institutes/grid.411662.6",
"name": [
"Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt"
],
"type": "Organization"
},
"familyName": "Khedr",
"givenName": "M.H.",
"id": "sg:person.015333711045.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333711045.11"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11356-010-0382-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013944990",
"https://doi.org/10.1007/s11356-010-0382-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00216-003-1796-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044105771",
"https://doi.org/10.1007/s00216-003-1796-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-84882-671-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024339857",
"https://doi.org/10.1007/978-1-84882-671-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1025520116015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050168815",
"https://doi.org/10.1023/a:1025520116015"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10853-007-2142-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048149978",
"https://doi.org/10.1007/s10853-007-2142-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-06",
"datePublishedReg": "2013-06-01",
"description": "Various morphologies of CuO nanostructures (oval, cluster, leaves, small rod, porus nanosheets) have been synthesized by novel simple method using microwave radiation. The produced CuO nanostructures were characterized by X-ray diffraction analysis technique (XRD), transmission electron microscopy (TEM), surface area analyzer (BET) and energy dispersive spectroscopy (EDS). The ability of CuO nanostructures as adsorbent was investigated for adsorptive removal of Pb(II) ions from aqueous solutions. Various physico\u2013chemical parameters such as pH, initial metal ion concentration, and equilibrium contact time were studied. The optimum solution pH for adsorption of Pb(II) from aqueous solutions was found to be 6.5 and the optimum contact time was found to be 4\u00a0h. The adsorption isotherms were obtained using concentrations of the metal ions ranging from 100 to 300\u00a0mg/l. The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and Freundlich adsorption isotherms. The maximum capacity of oval, cluster, leaves, small rod and porus nanosheets CuO nanostructures for Pb2+ are 125, 116, 117, 120 and 115\u00a0mg/g. This study revealed that CuO nano structures was an effective adsorbent for removal of Pb(II) ions from aqueous solutions.",
"genre": "article",
"id": "sg:pub.10.1016/j.bjbas.2013.01.001",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1146905",
"issn": [
"2314-8535",
"2314-8543"
],
"name": "Beni-Suef University Journal of Basic and Applied Sciences",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2"
}
],
"keywords": [
"CuO nanostructures",
"transmission electron microscopy",
"energy dispersive spectroscopy",
"aqueous solution",
"surface area analyzer",
"ray diffraction analysis technique",
"nano structures",
"adsorption isotherms",
"nanostructures",
"novel simple method",
"dispersive spectroscopy",
"electron microscopy",
"initial metal ion concentration",
"contact time",
"optimum solution pH",
"metal ion concentration",
"copper oxide",
"effective adsorbent",
"Freundlich adsorption isotherm",
"equilibrium contact time",
"microwave radiation",
"adsorptive removal",
"order reaction kinetics",
"metal ions",
"physico-chemical parameters",
"solution pH",
"adsorption process",
"optimum contact time",
"reaction kinetics",
"adsorbent",
"ions",
"adsorption",
"maximum capacity",
"nanosheets",
"ion concentration",
"simple method",
"small rods",
"isotherms",
"microscopy",
"oxide",
"spectroscopy",
"solution",
"morphology",
"Pb2",
"Langmuir",
"analyzer",
"removal",
"pH",
"concentration",
"kinetics",
"capacity",
"technique",
"structure",
"rods",
"method",
"time",
"analysis techniques",
"clusters",
"ability",
"process",
"parameters",
"radiation",
"leaves",
"study",
"oval"
],
"name": "Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures",
"pagination": "61-71",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1050705037"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1016/j.bjbas.2013.01.001"
]
}
],
"sameAs": [
"https://doi.org/10.1016/j.bjbas.2013.01.001",
"https://app.dimensions.ai/details/publication/pub.1050705037"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_599.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1016/j.bjbas.2013.01.001"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/j.bjbas.2013.01.001'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/j.bjbas.2013.01.001'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/j.bjbas.2013.01.001'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/j.bjbas.2013.01.001'
This table displays all metadata directly associated to this object as RDF triples.
167 TRIPLES
22 PREDICATES
96 URIs
83 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1016/j.bjbas.2013.01.001 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | Ncf53f4c244aa4356b2fe3020e6691176 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-84882-671-7 |
5 | ″ | ″ | sg:pub.10.1007/s00216-003-1796-2 |
6 | ″ | ″ | sg:pub.10.1007/s10853-007-2142-4 |
7 | ″ | ″ | sg:pub.10.1007/s11356-010-0382-3 |
8 | ″ | ″ | sg:pub.10.1023/a:1025520116015 |
9 | ″ | schema:datePublished | 2013-06 |
10 | ″ | schema:datePublishedReg | 2013-06-01 |
11 | ″ | schema:description | Various morphologies of CuO nanostructures (oval, cluster, leaves, small rod, porus nanosheets) have been synthesized by novel simple method using microwave radiation. The produced CuO nanostructures were characterized by X-ray diffraction analysis technique (XRD), transmission electron microscopy (TEM), surface area analyzer (BET) and energy dispersive spectroscopy (EDS). The ability of CuO nanostructures as adsorbent was investigated for adsorptive removal of Pb(II) ions from aqueous solutions. Various physico–chemical parameters such as pH, initial metal ion concentration, and equilibrium contact time were studied. The optimum solution pH for adsorption of Pb(II) from aqueous solutions was found to be 6.5 and the optimum contact time was found to be 4 h. The adsorption isotherms were obtained using concentrations of the metal ions ranging from 100 to 300 mg/l. The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and Freundlich adsorption isotherms. The maximum capacity of oval, cluster, leaves, small rod and porus nanosheets CuO nanostructures for Pb2+ are 125, 116, 117, 120 and 115 mg/g. This study revealed that CuO nano structures was an effective adsorbent for removal of Pb(II) ions from aqueous solutions. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | true |
15 | ″ | schema:isPartOf | N1f841bf41e5547f4b8b81d26c7349687 |
16 | ″ | ″ | N4ca1cd770b5e4584a549bcd68380088b |
17 | ″ | ″ | sg:journal.1146905 |
18 | ″ | schema:keywords | CuO nanostructures |
19 | ″ | ″ | Freundlich adsorption isotherm |
20 | ″ | ″ | Langmuir |
21 | ″ | ″ | Pb2 |
22 | ″ | ″ | ability |
23 | ″ | ″ | adsorbent |
24 | ″ | ″ | adsorption |
25 | ″ | ″ | adsorption isotherms |
26 | ″ | ″ | adsorption process |
27 | ″ | ″ | adsorptive removal |
28 | ″ | ″ | analysis techniques |
29 | ″ | ″ | analyzer |
30 | ″ | ″ | aqueous solution |
31 | ″ | ″ | capacity |
32 | ″ | ″ | clusters |
33 | ″ | ″ | concentration |
34 | ″ | ″ | contact time |
35 | ″ | ″ | copper oxide |
36 | ″ | ″ | dispersive spectroscopy |
37 | ″ | ″ | effective adsorbent |
38 | ″ | ″ | electron microscopy |
39 | ″ | ″ | energy dispersive spectroscopy |
40 | ″ | ″ | equilibrium contact time |
41 | ″ | ″ | initial metal ion concentration |
42 | ″ | ″ | ion concentration |
43 | ″ | ″ | ions |
44 | ″ | ″ | isotherms |
45 | ″ | ″ | kinetics |
46 | ″ | ″ | leaves |
47 | ″ | ″ | maximum capacity |
48 | ″ | ″ | metal ion concentration |
49 | ″ | ″ | metal ions |
50 | ″ | ″ | method |
51 | ″ | ″ | microscopy |
52 | ″ | ″ | microwave radiation |
53 | ″ | ″ | morphology |
54 | ″ | ″ | nano structures |
55 | ″ | ″ | nanosheets |
56 | ″ | ″ | nanostructures |
57 | ″ | ″ | novel simple method |
58 | ″ | ″ | optimum contact time |
59 | ″ | ″ | optimum solution pH |
60 | ″ | ″ | order reaction kinetics |
61 | ″ | ″ | oval |
62 | ″ | ″ | oxide |
63 | ″ | ″ | pH |
64 | ″ | ″ | parameters |
65 | ″ | ″ | physico-chemical parameters |
66 | ″ | ″ | process |
67 | ″ | ″ | radiation |
68 | ″ | ″ | ray diffraction analysis technique |
69 | ″ | ″ | reaction kinetics |
70 | ″ | ″ | removal |
71 | ″ | ″ | rods |
72 | ″ | ″ | simple method |
73 | ″ | ″ | small rods |
74 | ″ | ″ | solution |
75 | ″ | ″ | solution pH |
76 | ″ | ″ | spectroscopy |
77 | ″ | ″ | structure |
78 | ″ | ″ | study |
79 | ″ | ″ | surface area analyzer |
80 | ″ | ″ | technique |
81 | ″ | ″ | time |
82 | ″ | ″ | transmission electron microscopy |
83 | ″ | schema:name | Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures |
84 | ″ | schema:pagination | 61-71 |
85 | ″ | schema:productId | N4920762306bf478fa4328f9f3f9c3236 |
86 | ″ | ″ | Neb5f59d8d44e4cefaf725f3d12d708a1 |
87 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050705037 |
88 | ″ | ″ | https://doi.org/10.1016/j.bjbas.2013.01.001 |
89 | ″ | schema:sdDatePublished | 2022-05-20T07:29 |
90 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
91 | ″ | schema:sdPublisher | Nfd9aece834474c08b9f112e066a8c23b |
92 | ″ | schema:url | https://doi.org/10.1016/j.bjbas.2013.01.001 |
93 | ″ | sgo:license | sg:explorer/license/ |
94 | ″ | sgo:sdDataset | articles |
95 | ″ | rdf:type | schema:ScholarlyArticle |
96 | N1f841bf41e5547f4b8b81d26c7349687 | schema:volumeNumber | 2 |
97 | ″ | rdf:type | schema:PublicationVolume |
98 | N218bdb5f519046f39ff0358c81779732 | rdf:first | sg:person.013352523011.45 |
99 | ″ | rdf:rest | Nd62ca46f9f3d408d9039fc2e888a4c02 |
100 | N4920762306bf478fa4328f9f3f9c3236 | schema:name | doi |
101 | ″ | schema:value | 10.1016/j.bjbas.2013.01.001 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | N4ca1cd770b5e4584a549bcd68380088b | schema:issueNumber | 2 |
104 | ″ | rdf:type | schema:PublicationIssue |
105 | Ncf53f4c244aa4356b2fe3020e6691176 | rdf:first | sg:person.012502366765.48 |
106 | ″ | rdf:rest | Nd06360d7c02f41b2b92507c9a142b2ed |
107 | Nd06360d7c02f41b2b92507c9a142b2ed | rdf:first | sg:person.011313225416.52 |
108 | ″ | rdf:rest | N218bdb5f519046f39ff0358c81779732 |
109 | Nd62ca46f9f3d408d9039fc2e888a4c02 | rdf:first | sg:person.015333711045.11 |
110 | ″ | rdf:rest | rdf:nil |
111 | Neb5f59d8d44e4cefaf725f3d12d708a1 | schema:name | dimensions_id |
112 | ″ | schema:value | pub.1050705037 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | Nfd9aece834474c08b9f112e066a8c23b | schema:name | Springer Nature - SN SciGraph project |
115 | ″ | rdf:type | schema:Organization |
116 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Chemical Sciences |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Physical Chemistry (incl. Structural) |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | sg:journal.1146905 | schema:issn | 2314-8535 |
123 | ″ | ″ | 2314-8543 |
124 | ″ | schema:name | Beni-Suef University Journal of Basic and Applied Sciences |
125 | ″ | schema:publisher | Springer Nature |
126 | ″ | rdf:type | schema:Periodical |
127 | sg:person.011313225416.52 | schema:affiliation | grid-institutes:None |
128 | ″ | schema:familyName | Bahgat |
129 | ″ | schema:givenName | M. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313225416.52 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.012502366765.48 | schema:affiliation | grid-institutes:grid.411662.6 |
133 | ″ | schema:familyName | Farghali |
134 | ″ | schema:givenName | A.A. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502366765.48 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.013352523011.45 | schema:affiliation | grid-institutes:grid.411662.6 |
138 | ″ | schema:familyName | Allah |
139 | ″ | schema:givenName | A. Enaiet |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352523011.45 |
141 | ″ | rdf:type | schema:Person |
142 | sg:person.015333711045.11 | schema:affiliation | grid-institutes:grid.411662.6 |
143 | ″ | schema:familyName | Khedr |
144 | ″ | schema:givenName | M.H. |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333711045.11 |
146 | ″ | rdf:type | schema:Person |
147 | sg:pub.10.1007/978-1-84882-671-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024339857 |
148 | ″ | ″ | https://doi.org/10.1007/978-1-84882-671-7 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | sg:pub.10.1007/s00216-003-1796-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044105771 |
151 | ″ | ″ | https://doi.org/10.1007/s00216-003-1796-2 |
152 | ″ | rdf:type | schema:CreativeWork |
153 | sg:pub.10.1007/s10853-007-2142-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048149978 |
154 | ″ | ″ | https://doi.org/10.1007/s10853-007-2142-4 |
155 | ″ | rdf:type | schema:CreativeWork |
156 | sg:pub.10.1007/s11356-010-0382-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013944990 |
157 | ″ | ″ | https://doi.org/10.1007/s11356-010-0382-3 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | sg:pub.10.1023/a:1025520116015 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050168815 |
160 | ″ | ″ | https://doi.org/10.1023/a:1025520116015 |
161 | ″ | rdf:type | schema:CreativeWork |
162 | grid-institutes:None | schema:alternateName | Central Metallurgical Researches and Development Institute (CMRDI), Helwan, Egypt |
163 | ″ | schema:name | Central Metallurgical Researches and Development Institute (CMRDI), Helwan, Egypt |
164 | ″ | rdf:type | schema:Organization |
165 | grid-institutes:grid.411662.6 | schema:alternateName | Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt |
166 | ″ | schema:name | Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt |
167 | ″ | rdf:type | schema:Organization |