Ontology type: schema:ScholarlyArticle Open Access: True
1994-11-01
AUTHORSJimmy K. Eng, Ashley L. McCormack, John R. Yates
ABSTRACTA method to correlate the uninterpreted tandem mass spectra of peptides produced under low energy (10–50 eV) collision conditions with amino acid sequences in the Genpept database has been developed. In this method the protein database is searched to identify linear amino acid sequences within a mass tolerance of ±1 u of the precursor ion molecular weight A cross-correlation function is then used to provide a measurement of similarity between the mass-to-charge ratios for the fragment ions predicted from amino acid sequences obtained from the database and the fragment ions observed in the tandem mass spectrum. In general, a difference greater than 0.1 between the normalized cross-correlation functions of the first- and second-ranked search results indicates a successful match between sequence and spectrum. Searches of species-specific protein databases with tandem mass spectra acquired from peptides obtained from the enzymatically digested total proteins of E. coli and S. cerevisiae cells allowed matching of the spectra to amino acid sequences within proteins of these organisms. The approach described in this manuscript provides a convenient method to interpret tandem mass spectra with known sequences in a protein database. More... »
PAGES976-989
http://scigraph.springernature.com/pub.10.1016/1044-0305(94)80016-2
DOIhttp://dx.doi.org/10.1016/1044-0305(94)80016-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1018629105
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/24226387
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Analytical Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0304",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medicinal and Biomolecular Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Molecular Biotechnology, University of Washington, 98185, Seattle, WA, USA",
"id": "http://www.grid.ac/institutes/grid.34477.33",
"name": [
"Department of Molecular Biotechnology, University of Washington, 98185, Seattle, WA, USA"
],
"type": "Organization"
},
"familyName": "Eng",
"givenName": "Jimmy K.",
"id": "sg:person.010623237677.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010623237677.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Molecular Biotechnology, University of Washington, 98185, Seattle, WA, USA",
"id": "http://www.grid.ac/institutes/grid.34477.33",
"name": [
"Department of Molecular Biotechnology, University of Washington, 98185, Seattle, WA, USA"
],
"type": "Organization"
},
"familyName": "McCormack",
"givenName": "Ashley L.",
"id": "sg:person.01300630310.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300630310.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Molecular Biotechnology, University of Washington, 98185, Seattle, WA, USA",
"id": "http://www.grid.ac/institutes/grid.34477.33",
"name": [
"Department of Molecular Biotechnology, University of Washington, 98185, Seattle, WA, USA"
],
"type": "Organization"
},
"familyName": "Yates",
"givenName": "John R.",
"id": "sg:person.01104567247.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104567247.41"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1016/1044-0305(91)80012-v",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042534876",
"https://doi.org/10.1016/1044-0305(91)80012-v"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/342682a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016425251",
"https://doi.org/10.1038/342682a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/353622a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008143034",
"https://doi.org/10.1038/353622a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1016/1044-0305(92)87060-c",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046021496",
"https://doi.org/10.1016/1044-0305(92)87060-c"
],
"type": "CreativeWork"
}
],
"datePublished": "1994-11-01",
"datePublishedReg": "1994-11-01",
"description": "A method to correlate the uninterpreted tandem mass spectra of peptides produced under low energy (10\u201350 eV) collision conditions with amino acid sequences in the Genpept database has been developed. In this method the protein database is searched to identify linear amino acid sequences within a mass tolerance of \u00b11 u of the precursor ion molecular weight A cross-correlation function is then used to provide a measurement of similarity between the mass-to-charge ratios for the fragment ions predicted from amino acid sequences obtained from the database and the fragment ions observed in the tandem mass spectrum. In general, a difference greater than 0.1 between the normalized cross-correlation functions of the first- and second-ranked search results indicates a successful match between sequence and spectrum. Searches of species-specific protein databases with tandem mass spectra acquired from peptides obtained from the enzymatically digested total proteins of E. coli and S. cerevisiae cells allowed matching of the spectra to amino acid sequences within proteins of these organisms. The approach described in this manuscript provides a convenient method to interpret tandem mass spectra with known sequences in a protein database.",
"genre": "article",
"id": "sg:pub.10.1016/1044-0305(94)80016-2",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1100508",
"issn": [
"1044-0305",
"1879-1123"
],
"name": "Journal of The American Society for Mass Spectrometry",
"publisher": "American Chemical Society (ACS)",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "5"
}
],
"keywords": [
"amino acid sequence",
"protein database",
"acid sequence",
"tandem mass spectra",
"S. cerevisiae cells",
"linear amino acid sequence",
"uninterpreted tandem mass spectra",
"cerevisiae cells",
"GenPept database",
"tandem mass spectral data",
"E. coli",
"sequence",
"protein",
"peptides",
"molecular weight",
"total protein",
"organisms",
"coli",
"mass tolerance",
"mass spectral data",
"cells",
"function",
"tolerance",
"mass spectra",
"similarity",
"low-energy collision conditions",
"fragment ions",
"database",
"charge ratio",
"spectral data",
"mass",
"conditions",
"convenient method",
"weight",
"differences",
"approach",
"data",
"results",
"spectra",
"ions",
"search",
"method",
"match",
"ratio",
"manuscript",
"normalized cross-correlation function",
"measurement of similarity",
"cross-correlation function",
"search results",
"measurements",
"collision conditions",
"successful match",
"matching"
],
"name": "An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database",
"pagination": "976-989",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1018629105"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1016/1044-0305(94)80016-2"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"24226387"
]
}
],
"sameAs": [
"https://doi.org/10.1016/1044-0305(94)80016-2",
"https://app.dimensions.ai/details/publication/pub.1018629105"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_250.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1016/1044-0305(94)80016-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/1044-0305(94)80016-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/1044-0305(94)80016-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/1044-0305(94)80016-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/1044-0305(94)80016-2'
This table displays all metadata directly associated to this object as RDF triples.
152 TRIPLES
21 PREDICATES
84 URIs
70 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1016/1044-0305(94)80016-2 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0301 |
3 | ″ | ″ | anzsrc-for:0304 |
4 | ″ | ″ | anzsrc-for:0306 |
5 | ″ | schema:author | Nc19ccfa40fa64091abc9f8979c5a08b2 |
6 | ″ | schema:citation | sg:pub.10.1016/1044-0305(91)80012-v |
7 | ″ | ″ | sg:pub.10.1016/1044-0305(92)87060-c |
8 | ″ | ″ | sg:pub.10.1038/342682a0 |
9 | ″ | ″ | sg:pub.10.1038/353622a0 |
10 | ″ | schema:datePublished | 1994-11-01 |
11 | ″ | schema:datePublishedReg | 1994-11-01 |
12 | ″ | schema:description | A method to correlate the uninterpreted tandem mass spectra of peptides produced under low energy (10–50 eV) collision conditions with amino acid sequences in the Genpept database has been developed. In this method the protein database is searched to identify linear amino acid sequences within a mass tolerance of ±1 u of the precursor ion molecular weight A cross-correlation function is then used to provide a measurement of similarity between the mass-to-charge ratios for the fragment ions predicted from amino acid sequences obtained from the database and the fragment ions observed in the tandem mass spectrum. In general, a difference greater than 0.1 between the normalized cross-correlation functions of the first- and second-ranked search results indicates a successful match between sequence and spectrum. Searches of species-specific protein databases with tandem mass spectra acquired from peptides obtained from the enzymatically digested total proteins of E. coli and S. cerevisiae cells allowed matching of the spectra to amino acid sequences within proteins of these organisms. The approach described in this manuscript provides a convenient method to interpret tandem mass spectra with known sequences in a protein database. |
13 | ″ | schema:genre | article |
14 | ″ | schema:isAccessibleForFree | true |
15 | ″ | schema:isPartOf | N0641bd57e25444408b13a1bca8edce3d |
16 | ″ | ″ | Nc5d7e98ac15b452b8f9e5bdd778eb866 |
17 | ″ | ″ | sg:journal.1100508 |
18 | ″ | schema:keywords | E. coli |
19 | ″ | ″ | GenPept database |
20 | ″ | ″ | S. cerevisiae cells |
21 | ″ | ″ | acid sequence |
22 | ″ | ″ | amino acid sequence |
23 | ″ | ″ | approach |
24 | ″ | ″ | cells |
25 | ″ | ″ | cerevisiae cells |
26 | ″ | ″ | charge ratio |
27 | ″ | ″ | coli |
28 | ″ | ″ | collision conditions |
29 | ″ | ″ | conditions |
30 | ″ | ″ | convenient method |
31 | ″ | ″ | cross-correlation function |
32 | ″ | ″ | data |
33 | ″ | ″ | database |
34 | ″ | ″ | differences |
35 | ″ | ″ | fragment ions |
36 | ″ | ″ | function |
37 | ″ | ″ | ions |
38 | ″ | ″ | linear amino acid sequence |
39 | ″ | ″ | low-energy collision conditions |
40 | ″ | ″ | manuscript |
41 | ″ | ″ | mass |
42 | ″ | ″ | mass spectra |
43 | ″ | ″ | mass spectral data |
44 | ″ | ″ | mass tolerance |
45 | ″ | ″ | match |
46 | ″ | ″ | matching |
47 | ″ | ″ | measurement of similarity |
48 | ″ | ″ | measurements |
49 | ″ | ″ | method |
50 | ″ | ″ | molecular weight |
51 | ″ | ″ | normalized cross-correlation function |
52 | ″ | ″ | organisms |
53 | ″ | ″ | peptides |
54 | ″ | ″ | protein |
55 | ″ | ″ | protein database |
56 | ″ | ″ | ratio |
57 | ″ | ″ | results |
58 | ″ | ″ | search |
59 | ″ | ″ | search results |
60 | ″ | ″ | sequence |
61 | ″ | ″ | similarity |
62 | ″ | ″ | spectra |
63 | ″ | ″ | spectral data |
64 | ″ | ″ | successful match |
65 | ″ | ″ | tandem mass spectra |
66 | ″ | ″ | tandem mass spectral data |
67 | ″ | ″ | tolerance |
68 | ″ | ″ | total protein |
69 | ″ | ″ | uninterpreted tandem mass spectra |
70 | ″ | ″ | weight |
71 | ″ | schema:name | An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database |
72 | ″ | schema:pagination | 976-989 |
73 | ″ | schema:productId | N39f2437d60084b94b885f3d83e0305e5 |
74 | ″ | ″ | Naa516568066748b5a899688f26dac09b |
75 | ″ | ″ | Nf070cf593992411a85ff8a825bb46cd4 |
76 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018629105 |
77 | ″ | ″ | https://doi.org/10.1016/1044-0305(94)80016-2 |
78 | ″ | schema:sdDatePublished | 2022-08-04T16:51 |
79 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
80 | ″ | schema:sdPublisher | Nadcfdd02f1a342b69b5adc9d7367730a |
81 | ″ | schema:url | https://doi.org/10.1016/1044-0305(94)80016-2 |
82 | ″ | sgo:license | sg:explorer/license/ |
83 | ″ | sgo:sdDataset | articles |
84 | ″ | rdf:type | schema:ScholarlyArticle |
85 | N0641bd57e25444408b13a1bca8edce3d | schema:volumeNumber | 5 |
86 | ″ | rdf:type | schema:PublicationVolume |
87 | N39f2437d60084b94b885f3d83e0305e5 | schema:name | doi |
88 | ″ | schema:value | 10.1016/1044-0305(94)80016-2 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N85cafd805ffa46cf93d0183824d5f04e | rdf:first | sg:person.01300630310.16 |
91 | ″ | rdf:rest | Nefbe64dcf1de4a7398b4a1ae3ee3131c |
92 | Naa516568066748b5a899688f26dac09b | schema:name | pubmed_id |
93 | ″ | schema:value | 24226387 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | Nadcfdd02f1a342b69b5adc9d7367730a | schema:name | Springer Nature - SN SciGraph project |
96 | ″ | rdf:type | schema:Organization |
97 | Nc19ccfa40fa64091abc9f8979c5a08b2 | rdf:first | sg:person.010623237677.28 |
98 | ″ | rdf:rest | N85cafd805ffa46cf93d0183824d5f04e |
99 | Nc5d7e98ac15b452b8f9e5bdd778eb866 | schema:issueNumber | 11 |
100 | ″ | rdf:type | schema:PublicationIssue |
101 | Nefbe64dcf1de4a7398b4a1ae3ee3131c | rdf:first | sg:person.01104567247.41 |
102 | ″ | rdf:rest | rdf:nil |
103 | Nf070cf593992411a85ff8a825bb46cd4 | schema:name | dimensions_id |
104 | ″ | schema:value | pub.1018629105 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Chemical Sciences |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:0301 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Analytical Chemistry |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0304 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Medicinal and Biomolecular Chemistry |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Physical Chemistry (incl. Structural) |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:journal.1100508 | schema:issn | 1044-0305 |
119 | ″ | ″ | 1879-1123 |
120 | ″ | schema:name | Journal of The American Society for Mass Spectrometry |
121 | ″ | schema:publisher | American Chemical Society (ACS) |
122 | ″ | rdf:type | schema:Periodical |
123 | sg:person.010623237677.28 | schema:affiliation | grid-institutes:grid.34477.33 |
124 | ″ | schema:familyName | Eng |
125 | ″ | schema:givenName | Jimmy K. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010623237677.28 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.01104567247.41 | schema:affiliation | grid-institutes:grid.34477.33 |
129 | ″ | schema:familyName | Yates |
130 | ″ | schema:givenName | John R. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104567247.41 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.01300630310.16 | schema:affiliation | grid-institutes:grid.34477.33 |
134 | ″ | schema:familyName | McCormack |
135 | ″ | schema:givenName | Ashley L. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300630310.16 |
137 | ″ | rdf:type | schema:Person |
138 | sg:pub.10.1016/1044-0305(91)80012-v | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042534876 |
139 | ″ | ″ | https://doi.org/10.1016/1044-0305(91)80012-v |
140 | ″ | rdf:type | schema:CreativeWork |
141 | sg:pub.10.1016/1044-0305(92)87060-c | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046021496 |
142 | ″ | ″ | https://doi.org/10.1016/1044-0305(92)87060-c |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1038/342682a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016425251 |
145 | ″ | ″ | https://doi.org/10.1038/342682a0 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1038/353622a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008143034 |
148 | ″ | ″ | https://doi.org/10.1038/353622a0 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | grid-institutes:grid.34477.33 | schema:alternateName | Department of Molecular Biotechnology, University of Washington, 98185, Seattle, WA, USA |
151 | ″ | schema:name | Department of Molecular Biotechnology, University of Washington, 98185, Seattle, WA, USA |
152 | ″ | rdf:type | schema:Organization |