Pattern-based algorithm for peptide sequencing from tandem high energy collision-induced dissociation mass spectra View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1992-05

AUTHORS

Wade M. Hines, Arnold M. Falick, Alma L. Burlingame, Bradford W. Gibson

ABSTRACT

A new strategy is reported for extracting complete and partial sequence information from collision-induced dissociation (CID) spectra of peptides, CID spectra are obtained from high energy CID of peptide molecular ions on a four-sector tandem mass spectrometer with an electro-optically coupled microchannel array detector, A peak detection routine reduces the spectrum to a list of peak masses and peak heights, which is then used for sequencing, The sequencing algorithm was designed to use spectral data to generate sequence fits directly rather than to use data to test the fit of series of sequence guesses. The peptide sequencing algorithm uses a pattern based on the polymeric nature of peptides to classify spectral peaks into sets that are related in a sequence-independent manner, It then establishes sequence relationships among these sets, Peak detection from raw data takes 10-20 s, with sequence generation requiring an additional 10-60 s on a Sun 3/60 workstation, The program is written in the C language to run on a Unix platform. The principal advantages of our method are in the speed of analysis and the potential for identifying modified or rare amino acids. The algorithm was designed to permit real-time sequencing but awaits hardware modifications to allow real-time access to CID spectra. More... »

PAGES

326-336

Identifiers

URI

http://scigraph.springernature.com/pub.10.1016/1044-0305(92)87060-c

DOI

http://dx.doi.org/10.1016/1044-0305(92)87060-c

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046021496

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24243043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Pharmaceutical Chemistry, University of California at San Francisco, 94143-0446, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hines", 
        "givenName": "Wade M.", 
        "id": "sg:person.01225403417.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225403417.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Pharmaceutical Chemistry, University of California at San Francisco, 94143-0446, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Falick", 
        "givenName": "Arnold M.", 
        "id": "sg:person.0703636727.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703636727.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Pharmaceutical Chemistry, University of California at San Francisco, 94143-0446, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burlingame", 
        "givenName": "Alma L.", 
        "id": "sg:person.016636517577.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016636517577.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Pharmaceutical Chemistry, University of California at San Francisco, 94143-0446, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gibson", 
        "givenName": "Bradford W.", 
        "id": "sg:person.014403467677.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014403467677.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0076-6879(90)93430-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000164337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200181102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005689598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200181102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005689598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.1990.070410731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008450221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(90)93427-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011827934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1176(88)80060-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014932740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200190607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018597901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200190607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018597901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150110702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019784717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150110702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019784717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200170214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020920343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200170214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020920343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(90)93420-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021331408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200130709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021772844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200130709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021772844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/286447a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024312886", 
          "https://doi.org/10.1038/286447a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1176(90)85012-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025454672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200111109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028733216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200111109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028733216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(90)90579-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029051536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1176(87)87050-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031264825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(90)93411-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032147567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200190103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037748041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200190103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037748041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/313756a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038715683", 
          "https://doi.org/10.1038/313756a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(00)85276-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042214311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(84)06006-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046951871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200141009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049542566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200141009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049542566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1290041023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052609318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00014a024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054966108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00148a019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054975963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00171a028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054977800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00412a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055174607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01518a069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055803686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2111581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062522790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2326633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062532653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2675315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078035466", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082249837", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-05", 
    "datePublishedReg": "1992-05-01", 
    "description": "A new strategy is reported for extracting complete and partial sequence information from collision-induced dissociation (CID) spectra of peptides, CID spectra are obtained from high energy CID of peptide molecular ions on a four-sector tandem mass spectrometer with an electro-optically coupled microchannel array detector, A peak detection routine reduces the spectrum to a list of peak masses and peak heights, which is then used for sequencing, The sequencing algorithm was designed to use spectral data to generate sequence fits directly rather than to use data to test the fit of series of sequence guesses. The peptide sequencing algorithm uses a pattern based on the polymeric nature of peptides to classify spectral peaks into sets that are related in a sequence-independent manner, It then establishes sequence relationships among these sets, Peak detection from raw data takes 10-20 s, with sequence generation requiring an additional 10-60 s on a Sun 3/60 workstation, The program is written in the C language to run on a Unix platform. The principal advantages of our method are in the speed of analysis and the potential for identifying modified or rare amino acids. The algorithm was designed to permit real-time sequencing but awaits hardware modifications to allow real-time access to CID spectra. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1016/1044-0305(92)87060-c", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1100508", 
        "issn": [
          "1044-0305", 
          "1879-1123"
        ], 
        "name": "Journal of The American Society for Mass Spectrometry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Pattern-based algorithm for peptide sequencing from tandem high energy collision-induced dissociation mass spectra", 
    "pagination": "326-336", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db386be655b363d3f612bbd8e3311bfa9d2ba9fcdd5440532311f73c1639590d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24243043"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9010412"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1016/1044-0305(92)87060-c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046021496"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1016/1044-0305(92)87060-c", 
      "https://app.dimensions.ai/details/publication/pub.1046021496"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1016%2F1044-0305%2892%2987060-C"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1016/1044-0305(92)87060-c'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1016/1044-0305(92)87060-c'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1016/1044-0305(92)87060-c'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1016/1044-0305(92)87060-c'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1016/1044-0305(92)87060-c schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N2ee144cbfb56401cb7f721e65f2f1749
4 schema:citation sg:pub.10.1038/286447a0
5 sg:pub.10.1038/313756a0
6 https://app.dimensions.ai/details/publication/pub.1078035466
7 https://app.dimensions.ai/details/publication/pub.1082249837
8 https://doi.org/10.1002/app.1990.070410731
9 https://doi.org/10.1002/bms.1200111109
10 https://doi.org/10.1002/bms.1200130709
11 https://doi.org/10.1002/bms.1200141009
12 https://doi.org/10.1002/bms.1200170214
13 https://doi.org/10.1002/bms.1200181102
14 https://doi.org/10.1002/bms.1200190103
15 https://doi.org/10.1002/bms.1200190607
16 https://doi.org/10.1002/elps.1150110702
17 https://doi.org/10.1002/rcm.1290041023
18 https://doi.org/10.1016/0003-2697(90)90579-x
19 https://doi.org/10.1016/0076-6879(84)06006-7
20 https://doi.org/10.1016/0076-6879(90)93411-d
21 https://doi.org/10.1016/0076-6879(90)93420-p
22 https://doi.org/10.1016/0076-6879(90)93427-m
23 https://doi.org/10.1016/0076-6879(90)93430-s
24 https://doi.org/10.1016/0168-1176(87)87050-7
25 https://doi.org/10.1016/0168-1176(88)80060-0
26 https://doi.org/10.1016/0168-1176(90)85012-q
27 https://doi.org/10.1016/s0003-2670(00)85276-9
28 https://doi.org/10.1021/ac00014a024
29 https://doi.org/10.1021/ac00148a019
30 https://doi.org/10.1021/ac00171a028
31 https://doi.org/10.1021/bi00412a002
32 https://doi.org/10.1021/ja01518a069
33 https://doi.org/10.1126/science.2111581
34 https://doi.org/10.1126/science.2326633
35 https://doi.org/10.1126/science.2675315
36 schema:datePublished 1992-05
37 schema:datePublishedReg 1992-05-01
38 schema:description A new strategy is reported for extracting complete and partial sequence information from collision-induced dissociation (CID) spectra of peptides, CID spectra are obtained from high energy CID of peptide molecular ions on a four-sector tandem mass spectrometer with an electro-optically coupled microchannel array detector, A peak detection routine reduces the spectrum to a list of peak masses and peak heights, which is then used for sequencing, The sequencing algorithm was designed to use spectral data to generate sequence fits directly rather than to use data to test the fit of series of sequence guesses. The peptide sequencing algorithm uses a pattern based on the polymeric nature of peptides to classify spectral peaks into sets that are related in a sequence-independent manner, It then establishes sequence relationships among these sets, Peak detection from raw data takes 10-20 s, with sequence generation requiring an additional 10-60 s on a Sun 3/60 workstation, The program is written in the C language to run on a Unix platform. The principal advantages of our method are in the speed of analysis and the potential for identifying modified or rare amino acids. The algorithm was designed to permit real-time sequencing but awaits hardware modifications to allow real-time access to CID spectra.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N38727c8df0694c7d929a3a2b4a73907a
43 Nbd54580dc7544adf83782d70e762abf0
44 sg:journal.1100508
45 schema:name Pattern-based algorithm for peptide sequencing from tandem high energy collision-induced dissociation mass spectra
46 schema:pagination 326-336
47 schema:productId N2143e6058d664be09f5e9996ef791224
48 N601d5945df4f4502ab28a173f78854ca
49 N60e9387a670b48d3961bb8300eb4742d
50 N7fcd8f0f06fc4d31b8be88bb9f1a98eb
51 Na851363d980145518f51fc04b32770a7
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046021496
53 https://doi.org/10.1016/1044-0305(92)87060-c
54 schema:sdDatePublished 2019-04-11T13:09
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nab92af8d4a8243b1a49d6756edae4f05
57 schema:url https://link.springer.com/10.1016%2F1044-0305%2892%2987060-C
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N204727b288fa488286c60d464a905463 rdf:first sg:person.014403467677.57
62 rdf:rest rdf:nil
63 N2143e6058d664be09f5e9996ef791224 schema:name nlm_unique_id
64 schema:value 9010412
65 rdf:type schema:PropertyValue
66 N2ee144cbfb56401cb7f721e65f2f1749 rdf:first sg:person.01225403417.68
67 rdf:rest N8dc53a5d3e1242649f6c244cbe442f3f
68 N38727c8df0694c7d929a3a2b4a73907a schema:volumeNumber 3
69 rdf:type schema:PublicationVolume
70 N601d5945df4f4502ab28a173f78854ca schema:name readcube_id
71 schema:value db386be655b363d3f612bbd8e3311bfa9d2ba9fcdd5440532311f73c1639590d
72 rdf:type schema:PropertyValue
73 N60e9387a670b48d3961bb8300eb4742d schema:name pubmed_id
74 schema:value 24243043
75 rdf:type schema:PropertyValue
76 N7fcd8f0f06fc4d31b8be88bb9f1a98eb schema:name dimensions_id
77 schema:value pub.1046021496
78 rdf:type schema:PropertyValue
79 N8dc53a5d3e1242649f6c244cbe442f3f rdf:first sg:person.0703636727.90
80 rdf:rest Nf5ffa94281844e7baa7652084f91bedd
81 Na851363d980145518f51fc04b32770a7 schema:name doi
82 schema:value 10.1016/1044-0305(92)87060-c
83 rdf:type schema:PropertyValue
84 Nab92af8d4a8243b1a49d6756edae4f05 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nbd54580dc7544adf83782d70e762abf0 schema:issueNumber 4
87 rdf:type schema:PublicationIssue
88 Nf5ffa94281844e7baa7652084f91bedd rdf:first sg:person.016636517577.45
89 rdf:rest N204727b288fa488286c60d464a905463
90 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
91 schema:name Biological Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
94 schema:name Genetics
95 rdf:type schema:DefinedTerm
96 sg:journal.1100508 schema:issn 1044-0305
97 1879-1123
98 schema:name Journal of The American Society for Mass Spectrometry
99 rdf:type schema:Periodical
100 sg:person.01225403417.68 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
101 schema:familyName Hines
102 schema:givenName Wade M.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225403417.68
104 rdf:type schema:Person
105 sg:person.014403467677.57 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
106 schema:familyName Gibson
107 schema:givenName Bradford W.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014403467677.57
109 rdf:type schema:Person
110 sg:person.016636517577.45 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
111 schema:familyName Burlingame
112 schema:givenName Alma L.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016636517577.45
114 rdf:type schema:Person
115 sg:person.0703636727.90 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
116 schema:familyName Falick
117 schema:givenName Arnold M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703636727.90
119 rdf:type schema:Person
120 sg:pub.10.1038/286447a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024312886
121 https://doi.org/10.1038/286447a0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/313756a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038715683
124 https://doi.org/10.1038/313756a0
125 rdf:type schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1078035466 schema:CreativeWork
127 https://app.dimensions.ai/details/publication/pub.1082249837 schema:CreativeWork
128 https://doi.org/10.1002/app.1990.070410731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008450221
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/bms.1200111109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028733216
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/bms.1200130709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021772844
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/bms.1200141009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049542566
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/bms.1200170214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020920343
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/bms.1200181102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005689598
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/bms.1200190103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037748041
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/bms.1200190607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018597901
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/elps.1150110702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019784717
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/rcm.1290041023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052609318
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0003-2697(90)90579-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029051536
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0076-6879(84)06006-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046951871
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0076-6879(90)93411-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1032147567
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0076-6879(90)93420-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1021331408
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0076-6879(90)93427-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1011827934
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0076-6879(90)93430-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1000164337
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0168-1176(87)87050-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031264825
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0168-1176(88)80060-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014932740
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/0168-1176(90)85012-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1025454672
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0003-2670(00)85276-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042214311
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/ac00014a024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054966108
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/ac00148a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054975963
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/ac00171a028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054977800
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/bi00412a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055174607
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/ja01518a069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055803686
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/science.2111581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062522790
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.2326633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532653
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.2675315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549952
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.266102.1 schema:alternateName University of California, San Francisco
185 schema:name Department of Pharmaceutical Chemistry, University of California at San Francisco, 94143-0446, San Francisco, CA, USA
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...