Ontology type: schema:ScholarlyArticle
2021-04-21
AUTHORSRan-Ran Chen, Qi-Fang Ren, Yu-Xin Liu, Yi Ding, Hai-Tao Zhu, Chun-Yu Xiong, Zhen Jin, Won-Chun Oh
ABSTRACTHerein, a novel visible-light-responsive g-C3N4/diatomite/MnO2 composite was successfully fabricated through a simple redox reaction method. The structure and morphology of the sample are mainly characterized by X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet–visible spectroscopy (UV–Vis). In this paper, the photo-catalytic activity of the sample was evaluated by degradation RhB under visible-light irradiation. The results shown that, compared with g-C3N4/diatomite composite, MnO2, g-C3N4, diatomite, the prepared g-C3N4/diatomite/2.5%MnO2 composite exhibits better photo-catalytic activity and stability. At the same time, the effect of different MnO2 additions on the photo-catalytic activity of the composite material was further analyzed. The results indicated that the g-C3N4/MnO2/diatomite composites exhibit highest photo-catalytic activity when the adding amount of MnO2 reached 2.5%. The degradation rate of the g-C3N4/diatomite/2.5%MnO2 is 93% after recycling for three times, showing good stability and reusability. Moreover, the mechanism of catalytic performance enhancement also has been discussed. More... »
PAGES548-558
http://scigraph.springernature.com/pub.10.1007/s43207-021-00115-7
DOIhttp://dx.doi.org/10.1007/s43207-021-00115-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1137371469
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.440647.5",
"name": [
"Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China",
"Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Ran-Ran",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.440647.5",
"name": [
"Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Ren",
"givenName": "Qi-Fang",
"id": "sg:person.012351304223.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351304223.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.440647.5",
"name": [
"Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Yu-Xin",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.440647.5",
"name": [
"Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China",
"Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Ding",
"givenName": "Yi",
"id": "sg:person.0634165103.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634165103.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.440647.5",
"name": [
"Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China",
"Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Zhu",
"givenName": "Hai-Tao",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.440647.5",
"name": [
"Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China",
"Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Xiong",
"givenName": "Chun-Yu",
"id": "sg:person.015670343207.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015670343207.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China",
"id": "http://www.grid.ac/institutes/grid.440647.5",
"name": [
"Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China"
],
"type": "Organization"
},
"familyName": "Jin",
"givenName": "Zhen",
"id": "sg:person.01175225160.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175225160.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Advanced Materials Science and Engineering, Hanseo University, 31962, Seosan, Republic of Korea",
"id": "http://www.grid.ac/institutes/grid.411977.d",
"name": [
"Department of Advanced Materials Science and Engineering, Hanseo University, 31962, Seosan, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Oh",
"givenName": "Won-Chun",
"id": "sg:person.015032760145.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10"
],
"type": "Person"
}
],
"datePublished": "2021-04-21",
"datePublishedReg": "2021-04-21",
"description": "Herein, a novel visible-light-responsive g-C3N4/diatomite/MnO2 composite was successfully fabricated through a simple redox reaction method. The structure and morphology of the sample are mainly characterized by X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet\u2013visible spectroscopy (UV\u2013Vis). In this paper, the photo-catalytic activity of the sample was evaluated by degradation RhB under visible-light irradiation. The results shown that, compared with g-C3N4/diatomite composite, MnO2, g-C3N4, diatomite, the prepared g-C3N4/diatomite/2.5%MnO2 composite exhibits better photo-catalytic activity and stability. At the same time, the effect of different MnO2 additions on the photo-catalytic activity of the composite material was further analyzed. The results indicated that the g-C3N4/MnO2/diatomite composites exhibit highest photo-catalytic activity when the adding amount of MnO2 reached 2.5%. The degradation rate of the g-C3N4/diatomite/2.5%MnO2 is 93% after recycling for three times, showing good stability and reusability. Moreover, the mechanism of catalytic performance enhancement also has been discussed.",
"genre": "article",
"id": "sg:pub.10.1007/s43207-021-00115-7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1137865",
"issn": [
"1229-7801",
"2234-0491"
],
"name": "Journal of the Korean Ceramic Society",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "58"
}
],
"keywords": [
"photo-catalytic activity",
"X-ray diffraction",
"energy dispersive spectroscopy",
"transmission electron microscopy",
"MnO2 composites",
"enhanced photo-catalytic activity",
"better photo-catalytic activity",
"higher photo-catalytic activity",
"diatomite composite",
"ultraviolet-visible spectroscopy",
"C3N4/diatomite composite",
"visible light irradiation",
"catalytic performance enhancement",
"amount of MnO2",
"electron microscopy",
"degradation RhB",
"photoelectron spectroscopy",
"visible light",
"good stability",
"C3N4",
"spectroscopy",
"MnO2",
"reaction method",
"degradation rate",
"composite materials",
"microscopy",
"composites",
"MnO2 addition",
"RhB",
"stability",
"reusability",
"diffraction",
"synthesis",
"Herein",
"diatomite",
"irradiation",
"morphology",
"performance enhancement",
"activity",
"materials",
"structure",
"samples",
"enhancement",
"amount",
"light",
"addition",
"mechanism",
"method",
"time",
"results",
"effect",
"same time",
"rate",
"paper"
],
"name": "Synthesis of g-C3N4/diatomite/MnO2 composites and their enhanced photo-catalytic activity driven by visible light",
"pagination": "548-558",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1137371469"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s43207-021-00115-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s43207-021-00115-7",
"https://app.dimensions.ai/details/publication/pub.1137371469"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_907.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s43207-021-00115-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s43207-021-00115-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s43207-021-00115-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s43207-021-00115-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s43207-021-00115-7'
This table displays all metadata directly associated to this object as RDF triples.
171 TRIPLES
21 PREDICATES
81 URIs
71 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s43207-021-00115-7 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | schema:author | Nad4cfd185af14c9ba643d2f0094ec914 |
6 | ″ | schema:datePublished | 2021-04-21 |
7 | ″ | schema:datePublishedReg | 2021-04-21 |
8 | ″ | schema:description | Herein, a novel visible-light-responsive g-C3N4/diatomite/MnO2 composite was successfully fabricated through a simple redox reaction method. The structure and morphology of the sample are mainly characterized by X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet–visible spectroscopy (UV–Vis). In this paper, the photo-catalytic activity of the sample was evaluated by degradation RhB under visible-light irradiation. The results shown that, compared with g-C3N4/diatomite composite, MnO2, g-C3N4, diatomite, the prepared g-C3N4/diatomite/2.5%MnO2 composite exhibits better photo-catalytic activity and stability. At the same time, the effect of different MnO2 additions on the photo-catalytic activity of the composite material was further analyzed. The results indicated that the g-C3N4/MnO2/diatomite composites exhibit highest photo-catalytic activity when the adding amount of MnO2 reached 2.5%. The degradation rate of the g-C3N4/diatomite/2.5%MnO2 is 93% after recycling for three times, showing good stability and reusability. Moreover, the mechanism of catalytic performance enhancement also has been discussed. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N0ba17c7abb8c4b7fa8dbc05c19977da0 |
13 | ″ | ″ | N1b4f643f73624bb6b24e7c017e2b7ab6 |
14 | ″ | ″ | sg:journal.1137865 |
15 | ″ | schema:keywords | C3N4 |
16 | ″ | ″ | C3N4/diatomite composite |
17 | ″ | ″ | Herein |
18 | ″ | ″ | MnO2 |
19 | ″ | ″ | MnO2 addition |
20 | ″ | ″ | MnO2 composites |
21 | ″ | ″ | RhB |
22 | ″ | ″ | X-ray diffraction |
23 | ″ | ″ | activity |
24 | ″ | ″ | addition |
25 | ″ | ″ | amount |
26 | ″ | ″ | amount of MnO2 |
27 | ″ | ″ | better photo-catalytic activity |
28 | ″ | ″ | catalytic performance enhancement |
29 | ″ | ″ | composite materials |
30 | ″ | ″ | composites |
31 | ″ | ″ | degradation RhB |
32 | ″ | ″ | degradation rate |
33 | ″ | ″ | diatomite |
34 | ″ | ″ | diatomite composite |
35 | ″ | ″ | diffraction |
36 | ″ | ″ | effect |
37 | ″ | ″ | electron microscopy |
38 | ″ | ″ | energy dispersive spectroscopy |
39 | ″ | ″ | enhanced photo-catalytic activity |
40 | ″ | ″ | enhancement |
41 | ″ | ″ | good stability |
42 | ″ | ″ | higher photo-catalytic activity |
43 | ″ | ″ | irradiation |
44 | ″ | ″ | light |
45 | ″ | ″ | materials |
46 | ″ | ″ | mechanism |
47 | ″ | ″ | method |
48 | ″ | ″ | microscopy |
49 | ″ | ″ | morphology |
50 | ″ | ″ | paper |
51 | ″ | ″ | performance enhancement |
52 | ″ | ″ | photo-catalytic activity |
53 | ″ | ″ | photoelectron spectroscopy |
54 | ″ | ″ | rate |
55 | ″ | ″ | reaction method |
56 | ″ | ″ | results |
57 | ″ | ″ | reusability |
58 | ″ | ″ | same time |
59 | ″ | ″ | samples |
60 | ″ | ″ | spectroscopy |
61 | ″ | ″ | stability |
62 | ″ | ″ | structure |
63 | ″ | ″ | synthesis |
64 | ″ | ″ | time |
65 | ″ | ″ | transmission electron microscopy |
66 | ″ | ″ | ultraviolet-visible spectroscopy |
67 | ″ | ″ | visible light |
68 | ″ | ″ | visible light irradiation |
69 | ″ | schema:name | Synthesis of g-C3N4/diatomite/MnO2 composites and their enhanced photo-catalytic activity driven by visible light |
70 | ″ | schema:pagination | 548-558 |
71 | ″ | schema:productId | N44f1dca79d274a55a2ccc91477d4a24a |
72 | ″ | ″ | Nb563f4c4d7f84accac1dea84a6ebcf26 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1137371469 |
74 | ″ | ″ | https://doi.org/10.1007/s43207-021-00115-7 |
75 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | Nfd28404ce47b43edb109cca9addeed1d |
78 | ″ | schema:url | https://doi.org/10.1007/s43207-021-00115-7 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | articles |
81 | ″ | rdf:type | schema:ScholarlyArticle |
82 | N0006794549f34badb9597a0aa95391a5 | rdf:first | sg:person.015670343207.20 |
83 | ″ | rdf:rest | Ncc246f2001a84b67b378fc8142a6cab9 |
84 | N0ba17c7abb8c4b7fa8dbc05c19977da0 | schema:volumeNumber | 58 |
85 | ″ | rdf:type | schema:PublicationVolume |
86 | N10a3c0ed7e5749a899a2776e610b6690 | rdf:first | sg:person.0634165103.26 |
87 | ″ | rdf:rest | N82f7017f86b04b4b88856e7d87d674ba |
88 | N1b4f643f73624bb6b24e7c017e2b7ab6 | schema:issueNumber | 5 |
89 | ″ | rdf:type | schema:PublicationIssue |
90 | N1c02cf45ef714f0b98231eb42406b8be | schema:affiliation | grid-institutes:grid.440647.5 |
91 | ″ | schema:familyName | Zhu |
92 | ″ | schema:givenName | Hai-Tao |
93 | ″ | rdf:type | schema:Person |
94 | N43a5642aacc640bcb85d083261992cc8 | rdf:first | N8f48a59e787940d798208b513c77019d |
95 | ″ | rdf:rest | N10a3c0ed7e5749a899a2776e610b6690 |
96 | N44f1dca79d274a55a2ccc91477d4a24a | schema:name | dimensions_id |
97 | ″ | schema:value | pub.1137371469 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N473c87d64e0e4c8c87b5ad8e4c26d49b | rdf:first | sg:person.012351304223.70 |
100 | ″ | rdf:rest | N43a5642aacc640bcb85d083261992cc8 |
101 | N7c97e7afcbd5438d9f849363c74af6d7 | rdf:first | sg:person.015032760145.10 |
102 | ″ | rdf:rest | rdf:nil |
103 | N7ddcc2da4a2a4eceae6d135c9c8d3902 | schema:affiliation | grid-institutes:grid.440647.5 |
104 | ″ | schema:familyName | Chen |
105 | ″ | schema:givenName | Ran-Ran |
106 | ″ | rdf:type | schema:Person |
107 | N82f7017f86b04b4b88856e7d87d674ba | rdf:first | N1c02cf45ef714f0b98231eb42406b8be |
108 | ″ | rdf:rest | N0006794549f34badb9597a0aa95391a5 |
109 | N8f48a59e787940d798208b513c77019d | schema:affiliation | grid-institutes:grid.440647.5 |
110 | ″ | schema:familyName | Liu |
111 | ″ | schema:givenName | Yu-Xin |
112 | ″ | rdf:type | schema:Person |
113 | Nad4cfd185af14c9ba643d2f0094ec914 | rdf:first | N7ddcc2da4a2a4eceae6d135c9c8d3902 |
114 | ″ | rdf:rest | N473c87d64e0e4c8c87b5ad8e4c26d49b |
115 | Nb563f4c4d7f84accac1dea84a6ebcf26 | schema:name | doi |
116 | ″ | schema:value | 10.1007/s43207-021-00115-7 |
117 | ″ | rdf:type | schema:PropertyValue |
118 | Ncc246f2001a84b67b378fc8142a6cab9 | rdf:first | sg:person.01175225160.11 |
119 | ″ | rdf:rest | N7c97e7afcbd5438d9f849363c74af6d7 |
120 | Nfd28404ce47b43edb109cca9addeed1d | schema:name | Springer Nature - SN SciGraph project |
121 | ″ | rdf:type | schema:Organization |
122 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Chemical Sciences |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Physical Chemistry (incl. Structural) |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Engineering |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
132 | ″ | schema:name | Materials Engineering |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | sg:journal.1137865 | schema:issn | 1229-7801 |
135 | ″ | ″ | 2234-0491 |
136 | ″ | schema:name | Journal of the Korean Ceramic Society |
137 | ″ | schema:publisher | Springer Nature |
138 | ″ | rdf:type | schema:Periodical |
139 | sg:person.01175225160.11 | schema:affiliation | grid-institutes:grid.440647.5 |
140 | ″ | schema:familyName | Jin |
141 | ″ | schema:givenName | Zhen |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175225160.11 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.012351304223.70 | schema:affiliation | grid-institutes:grid.440647.5 |
145 | ″ | schema:familyName | Ren |
146 | ″ | schema:givenName | Qi-Fang |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351304223.70 |
148 | ″ | rdf:type | schema:Person |
149 | sg:person.015032760145.10 | schema:affiliation | grid-institutes:grid.411977.d |
150 | ″ | schema:familyName | Oh |
151 | ″ | schema:givenName | Won-Chun |
152 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10 |
153 | ″ | rdf:type | schema:Person |
154 | sg:person.015670343207.20 | schema:affiliation | grid-institutes:grid.440647.5 |
155 | ″ | schema:familyName | Xiong |
156 | ″ | schema:givenName | Chun-Yu |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015670343207.20 |
158 | ″ | rdf:type | schema:Person |
159 | sg:person.0634165103.26 | schema:affiliation | grid-institutes:grid.440647.5 |
160 | ″ | schema:familyName | Ding |
161 | ″ | schema:givenName | Yi |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634165103.26 |
163 | ″ | rdf:type | schema:Person |
164 | grid-institutes:grid.411977.d | schema:alternateName | Department of Advanced Materials Science and Engineering, Hanseo University, 31962, Seosan, Republic of Korea |
165 | ″ | schema:name | Department of Advanced Materials Science and Engineering, Hanseo University, 31962, Seosan, Republic of Korea |
166 | ″ | rdf:type | schema:Organization |
167 | grid-institutes:grid.440647.5 | schema:alternateName | Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China |
168 | ″ | ″ | Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China |
169 | ″ | schema:name | Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, 230601, Hefei, Anhui, China |
170 | ″ | ″ | Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 230022, Hefei, Anhui, China |
171 | ″ | rdf:type | schema:Organization |