Morphological, biochemical and molecular characterization for genetic variability analysis of Capsicum annuum View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

Parthsinh M. Rahevar, Jyotindra N. Patel, Sushil Kumar, Rajeshkumar R. Acharya

ABSTRACT

Chilli (Capsicum annuum L.) with immense industrial, therapeutic and export potential is an imperative vegetable and condiment crop of the globe. The genetic variability is plinth for any breeding program. To examine the variability in chilli, 58 chilli genotypes were screened for seven agronomic and five biochemical traits along with 26 SSR markers. The germplasm displayed sufficient variability for all traits at both genotypic and phenotypic levels in consort with more than 60% heritability. Green fruit yield per plant exhibited significant correlation with primary branches per plant (rg = 0.428 and rp = 0.354), fruits per plant (rg = 0.410 and rp = 0.441), single green fruit weight (rg = 0.625 and rp = 0.602), moisture (rg = 0.271 and rp = 0.227) and chlorophyll (rg = 0.382 and rp = 0.368). The path analysis also revealed fruit yield per plant was directly influenced by primary branches per plant (0.115), fruits per plant (0.435), single green fruit weight (0.763), moisture (0.137) and chlorophyll (0.233). Manhattan distance produced 5 clusters, at a limit value of 0.14, during phenotypic based clustering. A total of 73 alleles were generated from 26 SSR primers. The mean alleles per locus were 4. The polymorphic information content (mean = 0.45) confined between 0.17 (CaES4787) to 0.80 (CAMS806). Merely, three groups were generated during molecular based analysis suggesting moderate diversity in the collection. A moderate correlation (0.66) was recorded between the Manhattan’s and Nei’s distance. More... »

PAGES

1-11

Journal

TITLE

Vegetos

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s42535-019-00016-5

DOI

http://dx.doi.org/10.1007/s42535-019-00016-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112851869


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anand Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.411373.3", 
          "name": [
            "Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, 388 110, Anand, India", 
            "Department of Agricultural Biotechnology, Anand Agricultural University, 388 110, Anand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahevar", 
        "givenName": "Parthsinh M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anand Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.411373.3", 
          "name": [
            "Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, 388 110, Anand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "Jyotindra N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anand Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.411373.3", 
          "name": [
            "Department of Agricultural Biotechnology, Anand Agricultural University, 388 110, Anand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Sushil", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anand Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.411373.3", 
          "name": [
            "Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, 388 110, Anand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Acharya", 
        "givenName": "Rajeshkumar R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scienta.2014.10.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010637673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10681-012-0855-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011632693", 
          "https://doi.org/10.1007/s10681-012-0855-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09637480500081936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012602004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.indcrop.2016.12.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021921477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.indcrop.2016.05.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5897/ajb2014.13695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024679313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3923/jas.2008.3951.3956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024871841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3923/biotech.2014.174.180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025368140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/308042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027992680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.indcrop.2010.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031094651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1270/jsbbs.62.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031830280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12298-013-0185-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034602093", 
          "https://doi.org/10.1007/s12298-013-0185-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040416489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.indcrop.2012.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041443394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.70.12.3321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042233071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2095-3119(16)61364-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047904643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/jas1601019a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049247193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150030105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050656375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150030105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050656375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf00044a048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055893623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/b79-163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062886189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12719/ksia.2012.24.5.547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064633658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15517/rbt.v60i3.1760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067855525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15517/rbt.v61i1.11130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067855614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21275/v5i3.nov162097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068970365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj1959.00021962005100090002x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068985347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2011.06.0319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5376/mpb.2016.07.0019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072798759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erx034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083933109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18006/2017.5(1).120.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084365969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24247/ijasrjun201733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085669027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5958/2229-4473.2017.00100.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091321221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20546/ijcmas.2017.609.333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092045706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20546/ijcmas.2018.701.390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100676058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17221/7/2009-hortsci", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100968167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/ajps.2018.93029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101015620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18782/2320-7051.5878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101593659"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-18", 
    "datePublishedReg": "2019-03-18", 
    "description": "Chilli (Capsicum annuum L.) with immense industrial, therapeutic and export potential is an imperative vegetable and condiment crop of the globe. The genetic variability is plinth for any breeding program. To examine the variability in chilli, 58 chilli genotypes were screened for seven agronomic and five biochemical traits along with 26 SSR markers. The germplasm displayed sufficient variability for all traits at both genotypic and phenotypic levels in consort with more than 60% heritability. Green fruit yield per plant exhibited significant correlation with primary branches per plant (rg = 0.428 and rp = 0.354), fruits per plant (rg = 0.410 and rp = 0.441), single green fruit weight (rg = 0.625 and rp = 0.602), moisture (rg = 0.271 and rp = 0.227) and chlorophyll (rg = 0.382 and rp = 0.368). The path analysis also revealed fruit yield per plant was directly influenced by primary branches per plant (0.115), fruits per plant (0.435), single green fruit weight (0.763), moisture (0.137) and chlorophyll (0.233). Manhattan distance produced 5 clusters, at a limit value of 0.14, during phenotypic based clustering. A total of 73 alleles were generated from 26 SSR primers. The mean alleles per locus were 4. The polymorphic information content (mean = 0.45) confined between 0.17 (CaES4787) to 0.80 (CAMS806). Merely, three groups were generated during molecular based analysis suggesting moderate diversity in the collection. A moderate correlation (0.66) was recorded between the Manhattan\u2019s and Nei\u2019s distance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s42535-019-00016-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047398", 
        "issn": [
          "0970-4078", 
          "2229-4473"
        ], 
        "name": "Vegetos", 
        "type": "Periodical"
      }
    ], 
    "name": "Morphological, biochemical and molecular characterization for genetic variability analysis of Capsicum annuum", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "40c5933b67e52a35a46914e513dd21b247b3f2ba5760bbfcb9c6528d391b72af"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s42535-019-00016-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112851869"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s42535-019-00016-5", 
      "https://app.dimensions.ai/details/publication/pub.1112851869"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54011_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs42535-019-00016-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42535-019-00016-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42535-019-00016-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42535-019-00016-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42535-019-00016-5'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      60 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s42535-019-00016-5 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author N4870286fdc0f41b8af7a2fb4d778641e
4 schema:citation sg:pub.10.1007/s10681-012-0855-1
5 sg:pub.10.1007/s12298-013-0185-3
6 https://doi.org/10.1002/elps.1150030105
7 https://doi.org/10.1016/j.indcrop.2010.06.013
8 https://doi.org/10.1016/j.indcrop.2012.10.007
9 https://doi.org/10.1016/j.indcrop.2016.05.049
10 https://doi.org/10.1016/j.indcrop.2016.12.036
11 https://doi.org/10.1016/j.scienta.2014.10.054
12 https://doi.org/10.1016/s2095-3119(16)61364-3
13 https://doi.org/10.1021/jf00044a048
14 https://doi.org/10.1073/pnas.70.12.3321
15 https://doi.org/10.1080/09637480500081936
16 https://doi.org/10.1093/bioinformatics/bti282
17 https://doi.org/10.1093/jxb/erx034
18 https://doi.org/10.1139/b79-163
19 https://doi.org/10.1155/2014/308042
20 https://doi.org/10.1270/jsbbs.62.93
21 https://doi.org/10.12719/ksia.2012.24.5.547
22 https://doi.org/10.15517/rbt.v60i3.1760
23 https://doi.org/10.15517/rbt.v61i1.11130
24 https://doi.org/10.17221/7/2009-hortsci
25 https://doi.org/10.18006/2017.5(1).120.125
26 https://doi.org/10.18782/2320-7051.5878
27 https://doi.org/10.20546/ijcmas.2017.609.333
28 https://doi.org/10.20546/ijcmas.2018.701.390
29 https://doi.org/10.21275/v5i3.nov162097
30 https://doi.org/10.2134/agronj1959.00021962005100090002x
31 https://doi.org/10.2135/cropsci2011.06.0319
32 https://doi.org/10.2298/jas1601019a
33 https://doi.org/10.24247/ijasrjun201733
34 https://doi.org/10.3923/biotech.2014.174.180
35 https://doi.org/10.3923/jas.2008.3951.3956
36 https://doi.org/10.4236/ajps.2018.93029
37 https://doi.org/10.5376/mpb.2016.07.0019
38 https://doi.org/10.5897/ajb2014.13695
39 https://doi.org/10.5958/2229-4473.2017.00100.8
40 schema:datePublished 2019-03-18
41 schema:datePublishedReg 2019-03-18
42 schema:description Chilli (Capsicum annuum L.) with immense industrial, therapeutic and export potential is an imperative vegetable and condiment crop of the globe. The genetic variability is plinth for any breeding program. To examine the variability in chilli, 58 chilli genotypes were screened for seven agronomic and five biochemical traits along with 26 SSR markers. The germplasm displayed sufficient variability for all traits at both genotypic and phenotypic levels in consort with more than 60% heritability. Green fruit yield per plant exhibited significant correlation with primary branches per plant (rg = 0.428 and rp = 0.354), fruits per plant (rg = 0.410 and rp = 0.441), single green fruit weight (rg = 0.625 and rp = 0.602), moisture (rg = 0.271 and rp = 0.227) and chlorophyll (rg = 0.382 and rp = 0.368). The path analysis also revealed fruit yield per plant was directly influenced by primary branches per plant (0.115), fruits per plant (0.435), single green fruit weight (0.763), moisture (0.137) and chlorophyll (0.233). Manhattan distance produced 5 clusters, at a limit value of 0.14, during phenotypic based clustering. A total of 73 alleles were generated from 26 SSR primers. The mean alleles per locus were 4. The polymorphic information content (mean = 0.45) confined between 0.17 (CaES4787) to 0.80 (CAMS806). Merely, three groups were generated during molecular based analysis suggesting moderate diversity in the collection. A moderate correlation (0.66) was recorded between the Manhattan’s and Nei’s distance.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf sg:journal.1047398
47 schema:name Morphological, biochemical and molecular characterization for genetic variability analysis of Capsicum annuum
48 schema:pagination 1-11
49 schema:productId N1ac33170cecb4261aff32ec905465dd6
50 Nb2eb91bad0734808aab990263a99aeed
51 Nd1e2f57d41c44109aede0f17658ab1fd
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112851869
53 https://doi.org/10.1007/s42535-019-00016-5
54 schema:sdDatePublished 2019-04-11T12:15
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nb1e7aac394744de0bf26f926ca165256
57 schema:url https://link.springer.com/10.1007%2Fs42535-019-00016-5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N15ab9e1d2d3e40cea0268600e97f6a35 schema:affiliation https://www.grid.ac/institutes/grid.411373.3
62 schema:familyName Acharya
63 schema:givenName Rajeshkumar R.
64 rdf:type schema:Person
65 N1ac33170cecb4261aff32ec905465dd6 schema:name doi
66 schema:value 10.1007/s42535-019-00016-5
67 rdf:type schema:PropertyValue
68 N4012f23342fd40e1ae9a2f849d38bca4 schema:affiliation https://www.grid.ac/institutes/grid.411373.3
69 schema:familyName Rahevar
70 schema:givenName Parthsinh M.
71 rdf:type schema:Person
72 N4870286fdc0f41b8af7a2fb4d778641e rdf:first N4012f23342fd40e1ae9a2f849d38bca4
73 rdf:rest N8ad4ea485f1448ebb8362ad120403ac9
74 N5d468afec524408eac9944d8df00093c rdf:first N15ab9e1d2d3e40cea0268600e97f6a35
75 rdf:rest rdf:nil
76 N61aa4186e47247bfb0be6801749bc94b schema:affiliation https://www.grid.ac/institutes/grid.411373.3
77 schema:familyName Patel
78 schema:givenName Jyotindra N.
79 rdf:type schema:Person
80 N8ad4ea485f1448ebb8362ad120403ac9 rdf:first N61aa4186e47247bfb0be6801749bc94b
81 rdf:rest Na40f14e3f6654fc8991ebd930f85d3b8
82 Na40f14e3f6654fc8991ebd930f85d3b8 rdf:first Nfab0277c79c44b7d84a8b517122fb0f6
83 rdf:rest N5d468afec524408eac9944d8df00093c
84 Nb1e7aac394744de0bf26f926ca165256 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nb2eb91bad0734808aab990263a99aeed schema:name readcube_id
87 schema:value 40c5933b67e52a35a46914e513dd21b247b3f2ba5760bbfcb9c6528d391b72af
88 rdf:type schema:PropertyValue
89 Nd1e2f57d41c44109aede0f17658ab1fd schema:name dimensions_id
90 schema:value pub.1112851869
91 rdf:type schema:PropertyValue
92 Nfab0277c79c44b7d84a8b517122fb0f6 schema:affiliation https://www.grid.ac/institutes/grid.411373.3
93 schema:familyName Kumar
94 schema:givenName Sushil
95 rdf:type schema:Person
96 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
97 schema:name Biological Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
100 schema:name Plant Biology
101 rdf:type schema:DefinedTerm
102 sg:journal.1047398 schema:issn 0970-4078
103 2229-4473
104 schema:name Vegetos
105 rdf:type schema:Periodical
106 sg:pub.10.1007/s10681-012-0855-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011632693
107 https://doi.org/10.1007/s10681-012-0855-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s12298-013-0185-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034602093
110 https://doi.org/10.1007/s12298-013-0185-3
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/elps.1150030105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050656375
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.indcrop.2010.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031094651
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.indcrop.2012.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041443394
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.indcrop.2016.05.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609097
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.indcrop.2016.12.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021921477
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.scienta.2014.10.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010637673
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s2095-3119(16)61364-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047904643
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/jf00044a048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055893623
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1073/pnas.70.12.3321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042233071
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/09637480500081936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012602004
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/bioinformatics/bti282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040416489
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1093/jxb/erx034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083933109
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1139/b79-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062886189
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1155/2014/308042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027992680
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1270/jsbbs.62.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031830280
141 rdf:type schema:CreativeWork
142 https://doi.org/10.12719/ksia.2012.24.5.547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064633658
143 rdf:type schema:CreativeWork
144 https://doi.org/10.15517/rbt.v60i3.1760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067855525
145 rdf:type schema:CreativeWork
146 https://doi.org/10.15517/rbt.v61i1.11130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067855614
147 rdf:type schema:CreativeWork
148 https://doi.org/10.17221/7/2009-hortsci schema:sameAs https://app.dimensions.ai/details/publication/pub.1100968167
149 rdf:type schema:CreativeWork
150 https://doi.org/10.18006/2017.5(1).120.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084365969
151 rdf:type schema:CreativeWork
152 https://doi.org/10.18782/2320-7051.5878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101593659
153 rdf:type schema:CreativeWork
154 https://doi.org/10.20546/ijcmas.2017.609.333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092045706
155 rdf:type schema:CreativeWork
156 https://doi.org/10.20546/ijcmas.2018.701.390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100676058
157 rdf:type schema:CreativeWork
158 https://doi.org/10.21275/v5i3.nov162097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068970365
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2134/agronj1959.00021962005100090002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068985347
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2135/cropsci2011.06.0319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031554
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2298/jas1601019a schema:sameAs https://app.dimensions.ai/details/publication/pub.1049247193
165 rdf:type schema:CreativeWork
166 https://doi.org/10.24247/ijasrjun201733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085669027
167 rdf:type schema:CreativeWork
168 https://doi.org/10.3923/biotech.2014.174.180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025368140
169 rdf:type schema:CreativeWork
170 https://doi.org/10.3923/jas.2008.3951.3956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024871841
171 rdf:type schema:CreativeWork
172 https://doi.org/10.4236/ajps.2018.93029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101015620
173 rdf:type schema:CreativeWork
174 https://doi.org/10.5376/mpb.2016.07.0019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072798759
175 rdf:type schema:CreativeWork
176 https://doi.org/10.5897/ajb2014.13695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024679313
177 rdf:type schema:CreativeWork
178 https://doi.org/10.5958/2229-4473.2017.00100.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091321221
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.411373.3 schema:alternateName Anand Agricultural University
181 schema:name Department of Agricultural Biotechnology, Anand Agricultural University, 388 110, Anand, India
182 Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, 388 110, Anand, India
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...