Nonparametric Predictive Comparison of Two Diagnostic Tests Based on Total Numbers of Correctly Diagnosed Individuals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-09

AUTHORS

Manal H. Alabdulhadi, Frank P. A. Coolen, Tahani Coolen-Maturi

ABSTRACT

In clinical applications, it is important to compare and study the ability of diagnostic tests to discriminate between individuals with and without the disease. In this paper, comparison of two diagnostic tests is presented and discussed using nonparametric predictive inference (NPI). We compare the two tests by considering the total numbers of correct diagnoses for specific numbers of future healthy individuals and future patients. This NPI approach for comparison of diagnostic tests is also generalized by the use of weighted sums for the healthy and patients groups, reflecting possibly different importance of correct diagnoses. Examples are provided to illustrate the new method. More... »

PAGES

38

References to SciGraph publications

  • 2011. Nonparametric Predictive Inference in INTERNATIONAL ENCYCLOPEDIA OF STATISTICAL SCIENCE
  • 2012-12. Nonparametric Predictive Inference for Binary Diagnostic Tests in JOURNAL OF STATISTICAL THEORY AND PRACTICE
  • 2006-07. On Nonparametric Predictive Inference and Objective Bayesianism in JOURNAL OF LOGIC, LANGUAGE AND INFORMATION
  • 2012-12. Nonparametric Predictive Inference for Accuracy of Ordinal Diagnostic Tests in JOURNAL OF STATISTICAL THEORY AND PRACTICE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s42519-019-0039-6

    DOI

    http://dx.doi.org/10.1007/s42519-019-0039-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112763800


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Qassim University", 
              "id": "https://www.grid.ac/institutes/grid.412602.3", 
              "name": [
                "Department of Mathematics, Qassim University, Buraydah, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alabdulhadi", 
            "givenName": "Manal H.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Durham University", 
              "id": "https://www.grid.ac/institutes/grid.8250.f", 
              "name": [
                "Department of Mathematical Sciences, Durham University, Durham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coolen", 
            "givenName": "Frank P. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Durham University", 
              "id": "https://www.grid.ac/institutes/grid.8250.f", 
              "name": [
                "Department of Mathematical Sciences, Durham University, Durham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coolen-Maturi", 
            "givenName": "Tahani", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-04898-2_416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000145917", 
              "https://doi.org/10.1007/978-3-642-04898-2_416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jspi.2011.11.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011769513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jspi.2005.11.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013918980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1080/15598608.2012.719800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016811080", 
              "https://doi.org/10.1080/15598608.2012.719800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1080/15598608.2012.719800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016811080", 
              "https://doi.org/10.1080/15598608.2012.719800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.3121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017876343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2014.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019544670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10849-005-9005-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025381068", 
              "https://doi.org/10.1007/s10849-005-9005-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7152(97)00081-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026767351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1541-0420.00071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038620183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jspi.2003.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041761461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jspi.2003.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041761461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1080/15598608.2012.719802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045462808", 
              "https://doi.org/10.1080/15598608.2012.719802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1080/15598608.2012.719802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045462808", 
              "https://doi.org/10.1080/15598608.2012.719802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15598608.2013.819792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045485384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0888-613x(00)00032-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047561010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610926.2016.1212074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058331554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1748006x13489483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064073470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1748006x13489483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064073470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.7317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085707859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610926.2017.1342834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090399718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1106820817", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470317082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109496284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109496284", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610926.2018.1549249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110979949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610926.2018.1549249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110979949"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-09", 
        "datePublishedReg": "2019-09-01", 
        "description": "In clinical applications, it is important to compare and study the ability of diagnostic tests to discriminate between individuals with and without the disease. In this paper, comparison of two diagnostic tests is presented and discussed using nonparametric predictive inference (NPI). We compare the two tests by considering the total numbers of correct diagnoses for specific numbers of future healthy individuals and future patients. This NPI approach for comparison of diagnostic tests is also generalized by the use of weighted sums for the healthy and patients groups, reflecting possibly different importance of correct diagnoses. Examples are provided to illustrate the new method.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s42519-019-0039-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041963", 
            "issn": [
              "1559-8608", 
              "1559-8616"
            ], 
            "name": "Journal of Statistical Theory and Practice", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Nonparametric Predictive Comparison of Two Diagnostic Tests Based on Total Numbers of Correctly Diagnosed Individuals", 
        "pagination": "38", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8151349d7f354ec205e9c07664ffeecd21bc3ba2c815f27459498d0a1f75a9f4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s42519-019-0039-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112763800"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s42519-019-0039-6", 
          "https://app.dimensions.ai/details/publication/pub.1112763800"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29203_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs42519-019-0039-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42519-019-0039-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42519-019-0039-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42519-019-0039-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42519-019-0039-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s42519-019-0039-6 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N1c4624877875465abc944f0ffb9a1b86
    4 schema:citation sg:pub.10.1007/978-3-642-04898-2_416
    5 sg:pub.10.1007/s10849-005-9005-7
    6 sg:pub.10.1080/15598608.2012.719800
    7 sg:pub.10.1080/15598608.2012.719802
    8 https://app.dimensions.ai/details/publication/pub.1106820817
    9 https://app.dimensions.ai/details/publication/pub.1109496284
    10 https://doi.org/10.1002/9780470317082
    11 https://doi.org/10.1002/sim.3121
    12 https://doi.org/10.1002/sim.7317
    13 https://doi.org/10.1016/j.csda.2014.04.005
    14 https://doi.org/10.1016/j.jspi.2003.07.003
    15 https://doi.org/10.1016/j.jspi.2005.11.008
    16 https://doi.org/10.1016/j.jspi.2011.11.015
    17 https://doi.org/10.1016/s0167-7152(97)00081-3
    18 https://doi.org/10.1016/s0888-613x(00)00032-3
    19 https://doi.org/10.1080/03610926.2016.1212074
    20 https://doi.org/10.1080/03610926.2017.1342834
    21 https://doi.org/10.1080/03610926.2018.1549249
    22 https://doi.org/10.1080/15598608.2013.819792
    23 https://doi.org/10.1111/1541-0420.00071
    24 https://doi.org/10.1177/1748006x13489483
    25 schema:datePublished 2019-09
    26 schema:datePublishedReg 2019-09-01
    27 schema:description In clinical applications, it is important to compare and study the ability of diagnostic tests to discriminate between individuals with and without the disease. In this paper, comparison of two diagnostic tests is presented and discussed using nonparametric predictive inference (NPI). We compare the two tests by considering the total numbers of correct diagnoses for specific numbers of future healthy individuals and future patients. This NPI approach for comparison of diagnostic tests is also generalized by the use of weighted sums for the healthy and patients groups, reflecting possibly different importance of correct diagnoses. Examples are provided to illustrate the new method.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N643b87348a9c44bdb8db14b2a487a808
    32 Nff89054a2a004ec6a9f51d8bf698154f
    33 sg:journal.1041963
    34 schema:name Nonparametric Predictive Comparison of Two Diagnostic Tests Based on Total Numbers of Correctly Diagnosed Individuals
    35 schema:pagination 38
    36 schema:productId N4fb378ccd6104816a6e96e2f0a7c870e
    37 N7953628fafd4420f85914eaf71b66839
    38 Nc4cd4f3878094ee4806d2b45263e4a47
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112763800
    40 https://doi.org/10.1007/s42519-019-0039-6
    41 schema:sdDatePublished 2019-04-11T11:54
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N5df5951712df412fb1e2ce8120df30eb
    44 schema:url https://link.springer.com/10.1007%2Fs42519-019-0039-6
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N0d6e5a7d11e547e4ac566caecfac8aef rdf:first N6dcb673693d54ae8804da97e93bc3ab8
    49 rdf:rest Nf3218bf139964c28ac3e5cde86ca5f49
    50 N1c4624877875465abc944f0ffb9a1b86 rdf:first N5f624eb478bb406ea655fc9ccd38c8e0
    51 rdf:rest N0d6e5a7d11e547e4ac566caecfac8aef
    52 N289cafe178904bc088268ec8ff470df8 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
    53 schema:familyName Coolen-Maturi
    54 schema:givenName Tahani
    55 rdf:type schema:Person
    56 N4fb378ccd6104816a6e96e2f0a7c870e schema:name doi
    57 schema:value 10.1007/s42519-019-0039-6
    58 rdf:type schema:PropertyValue
    59 N5df5951712df412fb1e2ce8120df30eb schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N5f624eb478bb406ea655fc9ccd38c8e0 schema:affiliation https://www.grid.ac/institutes/grid.412602.3
    62 schema:familyName Alabdulhadi
    63 schema:givenName Manal H.
    64 rdf:type schema:Person
    65 N643b87348a9c44bdb8db14b2a487a808 schema:volumeNumber 13
    66 rdf:type schema:PublicationVolume
    67 N6dcb673693d54ae8804da97e93bc3ab8 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
    68 schema:familyName Coolen
    69 schema:givenName Frank P. A.
    70 rdf:type schema:Person
    71 N7953628fafd4420f85914eaf71b66839 schema:name readcube_id
    72 schema:value 8151349d7f354ec205e9c07664ffeecd21bc3ba2c815f27459498d0a1f75a9f4
    73 rdf:type schema:PropertyValue
    74 Nc4cd4f3878094ee4806d2b45263e4a47 schema:name dimensions_id
    75 schema:value pub.1112763800
    76 rdf:type schema:PropertyValue
    77 Nf3218bf139964c28ac3e5cde86ca5f49 rdf:first N289cafe178904bc088268ec8ff470df8
    78 rdf:rest rdf:nil
    79 Nff89054a2a004ec6a9f51d8bf698154f schema:issueNumber 3
    80 rdf:type schema:PublicationIssue
    81 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Medical and Health Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Clinical Sciences
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1041963 schema:issn 1559-8608
    88 1559-8616
    89 schema:name Journal of Statistical Theory and Practice
    90 rdf:type schema:Periodical
    91 sg:pub.10.1007/978-3-642-04898-2_416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000145917
    92 https://doi.org/10.1007/978-3-642-04898-2_416
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s10849-005-9005-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025381068
    95 https://doi.org/10.1007/s10849-005-9005-7
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1080/15598608.2012.719800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016811080
    98 https://doi.org/10.1080/15598608.2012.719800
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1080/15598608.2012.719802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045462808
    101 https://doi.org/10.1080/15598608.2012.719802
    102 rdf:type schema:CreativeWork
    103 https://app.dimensions.ai/details/publication/pub.1106820817 schema:CreativeWork
    104 https://app.dimensions.ai/details/publication/pub.1109496284 schema:CreativeWork
    105 https://doi.org/10.1002/9780470317082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496284
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1002/sim.3121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017876343
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/sim.7317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085707859
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.csda.2014.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019544670
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.jspi.2003.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041761461
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.jspi.2005.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013918980
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.jspi.2011.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011769513
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0167-7152(97)00081-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026767351
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/s0888-613x(00)00032-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047561010
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1080/03610926.2016.1212074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058331554
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1080/03610926.2017.1342834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090399718
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1080/03610926.2018.1549249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110979949
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1080/15598608.2013.819792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045485384
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1111/1541-0420.00071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038620183
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1177/1748006x13489483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064073470
    134 rdf:type schema:CreativeWork
    135 https://www.grid.ac/institutes/grid.412602.3 schema:alternateName Qassim University
    136 schema:name Department of Mathematics, Qassim University, Buraydah, Saudi Arabia
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
    139 schema:name Department of Mathematical Sciences, Durham University, Durham, UK
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...