Log-Burr XII Gamma–Weibull Regression Model with Random Effects and Censored Data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Elizabeth M. Hashimoto, Giovana O. Silva, Edwin M. M. Ortega, Gauss M. Cordeiro

ABSTRACT

It may happen in some applications that the assumption of independence of survival times does not hold. Thus, we propose a new log-Burr XII regression model with log-gamma–Weibull distributions for the random effects. The maximum likelihood method is used to estimate the model parameters based on the Gauss–Hermite numerical integration technique. For different parameter settings, sample sizes, censoring percentages and correlated data, various simulations are performed. Some global-influence measurements are also investigated. In order to assess the robustness of the maximum likelihood estimators, we evaluate local influence on the estimates of the parameters under different perturbation schemes. We illustrate the importance of the new model by means of a real data set in analysis of experiments. More... »

PAGES

27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s42519-018-0026-3

DOI

http://dx.doi.org/10.1007/s42519-018-0026-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112142074


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of Technology \u2013 Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.474682.b", 
          "name": [
            "Departamento Acad\u00eamico de Matem\u00e1tica, UTFPR, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Elizabeth M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Bahia", 
          "id": "https://www.grid.ac/institutes/grid.8399.b", 
          "name": [
            "Departamento de Estat\u00edstica, UFBA, Salvador, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "Giovana O.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Departamento de Ci\u00eancias Exatas, ESALQ - USP, Av. P\u00e1dua Dias 11, Caixa Postal 9, 13418-900, Piracicaba, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ortega", 
        "givenName": "Edwin M. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Pernambuco", 
          "id": "https://www.grid.ac/institutes/grid.411227.3", 
          "name": [
            "Departamento de Estat\u00edstica, UFPE, Recife, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cordeiro", 
        "givenName": "Gauss M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/sim.3077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000824556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.201500066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002824999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.201500066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002824999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2015.1071376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003585579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-016-0517-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007946554", 
          "https://doi.org/10.1007/s11749-016-0517-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-016-0517-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007946554", 
          "https://doi.org/10.1007/s11749-016-0517-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02664763.2015.1089221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010248146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011204249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00985449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013407905", 
          "https://doi.org/10.1007/bf00985449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2006.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014646538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stamet.2008.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018127520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2011.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018647112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200410141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020393349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200410141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020393349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02331888.2014.958489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023622766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19970130)16:2<215::aid-sim481>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024683061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.6416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032360616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0258(20001230)19:24<3309::aid-sim825>3.0.co;2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034425120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2011.574633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034592247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035355161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2001.00795.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049362038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00497.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053043798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610926.2012.740127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058330097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3109764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070202579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5539/ijsp.v5n3p9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072959208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5351/csam.2017.24.1.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084000624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228020000900206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090566159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228020000900206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090566159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1998.11979874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101131215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106815529", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118032985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106815529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "It may happen in some applications that the assumption of independence of survival times does not hold. Thus, we propose a new log-Burr XII regression model with log-gamma\u2013Weibull distributions for the random effects. The maximum likelihood method is used to estimate the model parameters based on the Gauss\u2013Hermite numerical integration technique. For different parameter settings, sample sizes, censoring percentages and correlated data, various simulations are performed. Some global-influence measurements are also investigated. In order to assess the robustness of the maximum likelihood estimators, we evaluate local influence on the estimates of the parameters under different perturbation schemes. We illustrate the importance of the new model by means of a real data set in analysis of experiments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s42519-018-0026-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041963", 
        "issn": [
          "1559-8608", 
          "1559-8616"
        ], 
        "name": "Journal of Statistical Theory and Practice", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Log-Burr XII Gamma\u2013Weibull Regression Model with Random Effects and Censored Data", 
    "pagination": "27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51b80756847219689132be4b989c67a5272b79bc51405704808fe58fd8cf8610"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s42519-018-0026-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112142074"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s42519-018-0026-3", 
      "https://app.dimensions.ai/details/publication/pub.1112142074"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53993_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs42519-018-0026-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42519-018-0026-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42519-018-0026-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42519-018-0026-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42519-018-0026-3'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s42519-018-0026-3 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd25735f9da544571ba777f789314b10c
4 schema:citation sg:pub.10.1007/bf00985449
5 sg:pub.10.1007/s11749-016-0517-z
6 https://app.dimensions.ai/details/publication/pub.1106815529
7 https://doi.org/10.1002/(sici)1097-0258(19970130)16:2<215::aid-sim481>3.0.co;2-j
8 https://doi.org/10.1002/1097-0258(20001230)19:24<3309::aid-sim825>3.0.co;2-9
9 https://doi.org/10.1002/9781118032985
10 https://doi.org/10.1002/bimj.200410141
11 https://doi.org/10.1002/bimj.201500066
12 https://doi.org/10.1002/sim.1876
13 https://doi.org/10.1002/sim.3077
14 https://doi.org/10.1002/sim.6416
15 https://doi.org/10.1016/j.csda.2006.08.030
16 https://doi.org/10.1016/j.csda.2008.01.003
17 https://doi.org/10.1016/j.csda.2011.12.002
18 https://doi.org/10.1016/j.stamet.2008.12.003
19 https://doi.org/10.1080/00224065.1998.11979874
20 https://doi.org/10.1080/00949655.2011.574633
21 https://doi.org/10.1080/00949655.2015.1071376
22 https://doi.org/10.1080/02331888.2014.958489
23 https://doi.org/10.1080/02664763.2015.1089221
24 https://doi.org/10.1080/03610926.2012.740127
25 https://doi.org/10.1111/j.0006-341x.1999.00497.x
26 https://doi.org/10.1111/j.0006-341x.2001.00795.x
27 https://doi.org/10.1177/096228020000900206
28 https://doi.org/10.2307/1403682
29 https://doi.org/10.2307/3109764
30 https://doi.org/10.5351/csam.2017.24.1.043
31 https://doi.org/10.5539/ijsp.v5n3p9
32 schema:datePublished 2019-06
33 schema:datePublishedReg 2019-06-01
34 schema:description It may happen in some applications that the assumption of independence of survival times does not hold. Thus, we propose a new log-Burr XII regression model with log-gamma–Weibull distributions for the random effects. The maximum likelihood method is used to estimate the model parameters based on the Gauss–Hermite numerical integration technique. For different parameter settings, sample sizes, censoring percentages and correlated data, various simulations are performed. Some global-influence measurements are also investigated. In order to assess the robustness of the maximum likelihood estimators, we evaluate local influence on the estimates of the parameters under different perturbation schemes. We illustrate the importance of the new model by means of a real data set in analysis of experiments.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N0224596c7f024e02a2fe626a9f0c54ec
39 Nc4b0a800362848dbbdc044d17db950a5
40 sg:journal.1041963
41 schema:name Log-Burr XII Gamma–Weibull Regression Model with Random Effects and Censored Data
42 schema:pagination 27
43 schema:productId N17700dfcd8fc459a828817acb5dbfb08
44 N378bffb07840489a932d8080197ac8ec
45 N9d6c4fe1a54d4dffad2ebdfd6d5c402e
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112142074
47 https://doi.org/10.1007/s42519-018-0026-3
48 schema:sdDatePublished 2019-04-11T12:13
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N8eafc1cb9c2e4f0abc2ed705d8b407eb
51 schema:url https://link.springer.com/10.1007%2Fs42519-018-0026-3
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0224596c7f024e02a2fe626a9f0c54ec schema:volumeNumber 13
56 rdf:type schema:PublicationVolume
57 N1658ca8eaf6a498491c1f573e1eef2dd rdf:first Nc9bbf11aae4c453ba12616672cabbb78
58 rdf:rest N1dc3c898e4934f53a952f56a58353eaf
59 N16b39a57543c44d9978c434e4e5f7268 schema:affiliation https://www.grid.ac/institutes/grid.474682.b
60 schema:familyName Hashimoto
61 schema:givenName Elizabeth M.
62 rdf:type schema:Person
63 N17700dfcd8fc459a828817acb5dbfb08 schema:name dimensions_id
64 schema:value pub.1112142074
65 rdf:type schema:PropertyValue
66 N1dc3c898e4934f53a952f56a58353eaf rdf:first Nc41bf1c4036d482e9d89c71b6d95e00d
67 rdf:rest N6c9e7519b9414a55b75fb5d910711293
68 N378bffb07840489a932d8080197ac8ec schema:name readcube_id
69 schema:value 51b80756847219689132be4b989c67a5272b79bc51405704808fe58fd8cf8610
70 rdf:type schema:PropertyValue
71 N4502bcb8d9c54942b0c193abf8d508b3 schema:name Departamento de Ciências Exatas, ESALQ - USP, Av. Pádua Dias 11, Caixa Postal 9, 13418-900, Piracicaba, São Paulo, Brazil
72 rdf:type schema:Organization
73 N6c9e7519b9414a55b75fb5d910711293 rdf:first N9278c265c6a6474090f33e2234032c5d
74 rdf:rest rdf:nil
75 N8eafc1cb9c2e4f0abc2ed705d8b407eb schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N9278c265c6a6474090f33e2234032c5d schema:affiliation https://www.grid.ac/institutes/grid.411227.3
78 schema:familyName Cordeiro
79 schema:givenName Gauss M.
80 rdf:type schema:Person
81 N9d6c4fe1a54d4dffad2ebdfd6d5c402e schema:name doi
82 schema:value 10.1007/s42519-018-0026-3
83 rdf:type schema:PropertyValue
84 Nc41bf1c4036d482e9d89c71b6d95e00d schema:affiliation N4502bcb8d9c54942b0c193abf8d508b3
85 schema:familyName Ortega
86 schema:givenName Edwin M. M.
87 rdf:type schema:Person
88 Nc4b0a800362848dbbdc044d17db950a5 schema:issueNumber 2
89 rdf:type schema:PublicationIssue
90 Nc9bbf11aae4c453ba12616672cabbb78 schema:affiliation https://www.grid.ac/institutes/grid.8399.b
91 schema:familyName Silva
92 schema:givenName Giovana O.
93 rdf:type schema:Person
94 Nd25735f9da544571ba777f789314b10c rdf:first N16b39a57543c44d9978c434e4e5f7268
95 rdf:rest N1658ca8eaf6a498491c1f573e1eef2dd
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
100 schema:name Statistics
101 rdf:type schema:DefinedTerm
102 sg:journal.1041963 schema:issn 1559-8608
103 1559-8616
104 schema:name Journal of Statistical Theory and Practice
105 rdf:type schema:Periodical
106 sg:pub.10.1007/bf00985449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013407905
107 https://doi.org/10.1007/bf00985449
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11749-016-0517-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007946554
110 https://doi.org/10.1007/s11749-016-0517-z
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1106815529 schema:CreativeWork
113 https://doi.org/10.1002/(sici)1097-0258(19970130)16:2<215::aid-sim481>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1024683061
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/1097-0258(20001230)19:24<3309::aid-sim825>3.0.co;2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034425120
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/9781118032985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106815529
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/bimj.200410141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020393349
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/bimj.201500066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002824999
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/sim.1876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035355161
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/sim.3077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000824556
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/sim.6416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032360616
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.csda.2006.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014646538
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.csda.2008.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011204249
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.csda.2011.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018647112
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.stamet.2008.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018127520
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/00224065.1998.11979874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101131215
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/00949655.2011.574633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034592247
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/00949655.2015.1071376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003585579
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/02331888.2014.958489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023622766
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/02664763.2015.1089221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010248146
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1080/03610926.2012.740127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058330097
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/j.0006-341x.1999.00497.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053043798
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1111/j.0006-341x.2001.00795.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049362038
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1177/096228020000900206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090566159
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2307/1403682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473954
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2307/3109764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070202579
158 rdf:type schema:CreativeWork
159 https://doi.org/10.5351/csam.2017.24.1.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084000624
160 rdf:type schema:CreativeWork
161 https://doi.org/10.5539/ijsp.v5n3p9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072959208
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.411227.3 schema:alternateName Federal University of Pernambuco
164 schema:name Departamento de Estatística, UFPE, Recife, Brazil
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.474682.b schema:alternateName Federal University of Technology – Paraná
167 schema:name Departamento Acadêmico de Matemática, UTFPR, Curitiba, Brazil
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.8399.b schema:alternateName Federal University of Bahia
170 schema:name Departamento de Estatística, UFBA, Salvador, Brazil
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...