A Beran-Inspired Estimator for the Weibull-Type Tail Coefficient View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Tchilabalo A. Kpanzou, Kokouvi M. Gamado, Hippolyte Hounnon

ABSTRACT

Heavy-tailed distributions are used in various areas of statistical applications. An important parameter for such distributions is the tail coefficient defined as the regular variation coefficient of the inverse cumulative hazard function. Many estimators, among which perhaps the most well known is the Hill estimator, have been developed for this coefficient. However, the Hill estimator as well as improved versions that are based on it rely on asymptotic expansions that are unlikely to hold for small samples. In this paper, we introduce a new approach to the tail coefficient estimation in the case of Weibull-type distributions that works well for small samples. A simulation study is carried out to characterize the properties of the new estimator and shows that it outperforms existing estimators based on asymptotic assumptions in terms of accuracy and the corresponding uncertainty. More... »

PAGES

20

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s42519-018-0013-8

DOI

http://dx.doi.org/10.1007/s42519-018-0013-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109785509


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Kara", 
          "id": "https://www.grid.ac/institutes/grid.442491.e", 
          "name": [
            "Facult\u00e9 des Sciences et Techniques, Universit\u00e9 de Kara, Kara, Togo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kpanzou", 
        "givenName": "Tchilabalo A.", 
        "id": "sg:person.015675167535.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015675167535.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomathematics and Statistics Scotland", 
          "id": "https://www.grid.ac/institutes/grid.450566.4", 
          "name": [
            "Biomathematics and Statistics Scotland (BioSS), Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gamado", 
        "givenName": "Kokouvi M.", 
        "id": "sg:person.01260055354.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260055354.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 d'Abomey-Calavi", 
          "id": "https://www.grid.ac/institutes/grid.412037.3", 
          "name": [
            "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 d\u2019Abomey-Calavi, Abomey-Calavi, B\u00e9nin"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hounnon", 
        "givenName": "Hippolyte", 
        "id": "sg:person.011342174507.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342174507.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.csda.2010.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009386696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15598608.2013.824823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015316796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9574.00068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017591595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9574.00068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017591595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02664763.2013.830085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019738672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2007.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024236592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13137-012-0042-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026908043", 
          "https://doi.org/10.1007/s13137-012-0042-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3758(93)90022-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032191355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2012.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036608639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610920903324882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058328889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/sta-120028371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058436657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/sta-200056849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058436912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176993783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176343247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1993.11979431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101149838"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Heavy-tailed distributions are used in various areas of statistical applications. An important parameter for such distributions is the tail coefficient defined as the regular variation coefficient of the inverse cumulative hazard function. Many estimators, among which perhaps the most well known is the Hill estimator, have been developed for this coefficient. However, the Hill estimator as well as improved versions that are based on it rely on asymptotic expansions that are unlikely to hold for small samples. In this paper, we introduce a new approach to the tail coefficient estimation in the case of Weibull-type distributions that works well for small samples. A simulation study is carried out to characterize the properties of the new estimator and shows that it outperforms existing estimators based on asymptotic assumptions in terms of accuracy and the corresponding uncertainty.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s42519-018-0013-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041963", 
        "issn": [
          "1559-8608", 
          "1559-8616"
        ], 
        "name": "Journal of Statistical Theory and Practice", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "A Beran-Inspired Estimator for the Weibull-Type Tail Coefficient", 
    "pagination": "20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e10fc9111823daa5eb770a02deaf15ec75c47488f6757ce603792fdcdb3e4164"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s42519-018-0013-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109785509"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s42519-018-0013-8", 
      "https://app.dimensions.ai/details/publication/pub.1109785509"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89790_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs42519-018-0013-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42519-018-0013-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42519-018-0013-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42519-018-0013-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42519-018-0013-8'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s42519-018-0013-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne85afa0d21dc4c308fa2b2f1da8133bc
4 schema:citation sg:pub.10.1007/s13137-012-0042-5
5 https://doi.org/10.1016/0378-3758(93)90022-x
6 https://doi.org/10.1016/j.csda.2010.05.028
7 https://doi.org/10.1016/j.insmatheco.2012.02.002
8 https://doi.org/10.1016/j.jspi.2007.04.026
9 https://doi.org/10.1080/00224065.1993.11979431
10 https://doi.org/10.1080/02664763.2013.830085
11 https://doi.org/10.1080/03610920903324882
12 https://doi.org/10.1080/15598608.2013.824823
13 https://doi.org/10.1081/sta-120028371
14 https://doi.org/10.1081/sta-200056849
15 https://doi.org/10.1111/1467-9574.00068
16 https://doi.org/10.1214/aop/1176993783
17 https://doi.org/10.1214/aos/1176343247
18 schema:datePublished 2019-03
19 schema:datePublishedReg 2019-03-01
20 schema:description Heavy-tailed distributions are used in various areas of statistical applications. An important parameter for such distributions is the tail coefficient defined as the regular variation coefficient of the inverse cumulative hazard function. Many estimators, among which perhaps the most well known is the Hill estimator, have been developed for this coefficient. However, the Hill estimator as well as improved versions that are based on it rely on asymptotic expansions that are unlikely to hold for small samples. In this paper, we introduce a new approach to the tail coefficient estimation in the case of Weibull-type distributions that works well for small samples. A simulation study is carried out to characterize the properties of the new estimator and shows that it outperforms existing estimators based on asymptotic assumptions in terms of accuracy and the corresponding uncertainty.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N2865ecde3b014116939536517ad6b6d3
25 Ned89d3ff67854a8c881d6e60de22d458
26 sg:journal.1041963
27 schema:name A Beran-Inspired Estimator for the Weibull-Type Tail Coefficient
28 schema:pagination 20
29 schema:productId N1f4bcb7cb9ae4b849a4ee620ab3dc585
30 N2c395e954c0e40f4bc249399858cf9c9
31 Nce014877a4b249a097a8ce155269221e
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109785509
33 https://doi.org/10.1007/s42519-018-0013-8
34 schema:sdDatePublished 2019-04-11T09:52
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Ne0f971149861408dbbef41b46c3fca7a
37 schema:url https://link.springer.com/10.1007%2Fs42519-018-0013-8
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1f4bcb7cb9ae4b849a4ee620ab3dc585 schema:name readcube_id
42 schema:value e10fc9111823daa5eb770a02deaf15ec75c47488f6757ce603792fdcdb3e4164
43 rdf:type schema:PropertyValue
44 N2865ecde3b014116939536517ad6b6d3 schema:volumeNumber 13
45 rdf:type schema:PublicationVolume
46 N2bf455c816c445eebfd4c812e7c51e3e rdf:first sg:person.01260055354.46
47 rdf:rest Ndb60a2dbd84048289a48a68b2cedcedc
48 N2c395e954c0e40f4bc249399858cf9c9 schema:name doi
49 schema:value 10.1007/s42519-018-0013-8
50 rdf:type schema:PropertyValue
51 Nce014877a4b249a097a8ce155269221e schema:name dimensions_id
52 schema:value pub.1109785509
53 rdf:type schema:PropertyValue
54 Ndb60a2dbd84048289a48a68b2cedcedc rdf:first sg:person.011342174507.10
55 rdf:rest rdf:nil
56 Ne0f971149861408dbbef41b46c3fca7a schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Ne85afa0d21dc4c308fa2b2f1da8133bc rdf:first sg:person.015675167535.52
59 rdf:rest N2bf455c816c445eebfd4c812e7c51e3e
60 Ned89d3ff67854a8c881d6e60de22d458 schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
66 schema:name Statistics
67 rdf:type schema:DefinedTerm
68 sg:journal.1041963 schema:issn 1559-8608
69 1559-8616
70 schema:name Journal of Statistical Theory and Practice
71 rdf:type schema:Periodical
72 sg:person.011342174507.10 schema:affiliation https://www.grid.ac/institutes/grid.412037.3
73 schema:familyName Hounnon
74 schema:givenName Hippolyte
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342174507.10
76 rdf:type schema:Person
77 sg:person.01260055354.46 schema:affiliation https://www.grid.ac/institutes/grid.450566.4
78 schema:familyName Gamado
79 schema:givenName Kokouvi M.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260055354.46
81 rdf:type schema:Person
82 sg:person.015675167535.52 schema:affiliation https://www.grid.ac/institutes/grid.442491.e
83 schema:familyName Kpanzou
84 schema:givenName Tchilabalo A.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015675167535.52
86 rdf:type schema:Person
87 sg:pub.10.1007/s13137-012-0042-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026908043
88 https://doi.org/10.1007/s13137-012-0042-5
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0378-3758(93)90022-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032191355
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.csda.2010.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009386696
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.insmatheco.2012.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036608639
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.jspi.2007.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024236592
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1080/00224065.1993.11979431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101149838
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1080/02664763.2013.830085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019738672
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/03610920903324882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058328889
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1080/15598608.2013.824823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015316796
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1081/sta-120028371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058436657
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1081/sta-200056849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058436912
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1111/1467-9574.00068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017591595
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1214/aop/1176993783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404805
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1214/aos/1176343247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407105
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.412037.3 schema:alternateName Université d'Abomey-Calavi
117 schema:name Département de Mathématiques, Université d’Abomey-Calavi, Abomey-Calavi, Bénin
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.442491.e schema:alternateName Université de Kara
120 schema:name Faculté des Sciences et Techniques, Université de Kara, Kara, Togo
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.450566.4 schema:alternateName Biomathematics and Statistics Scotland
123 schema:name Biomathematics and Statistics Scotland (BioSS), Edinburgh, UK
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...