Asymptotic Convergence Rates of Schwarz Waveform Relaxation Algorithms for Schrödinger Equations with an Arbitrary Number of Subdomains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Xavier Antoine, Emmanuel Lorin

ABSTRACT

We derive some asymptotic estimates of the rate of convergence of Schwarz Waveform Relaxation domain decomposition methods for the Schrödinger equation when using an arbitrary number of subdomains. Hence, we justify that under certain conditions, the rates of convergence mathematically obtained for two subdomains (Antoine et al. in ESAIM M2AN, 10.1051/m2an/2017048, 2018; Antoine and Lorin in Numer Math 137(4):923–958, 2017; Antoine et al. in (submitted), 2018) are still asymptotically valid for a larger number of subdomains, as it is usually numerically observed (Halpern and Szeftel in Math Models Methods Appl Sci 20(12):2167–2199, 2010). More... »

PAGES

34-46

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y

DOI

http://dx.doi.org/10.1007/s42493-018-00012-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111400792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut \u00c9lie Cartan de Lorraine", 
          "id": "https://www.grid.ac/institutes/grid.462063.5", 
          "name": [
            "Institut Elie Cartan de Lorraine, UMR CNRS 7502, Universit\u00e9 de Lorraine, Inria Nancy-Grand Est, SPHINX Team, 54506, Vandoeuvre-l\u00e8s-Nancy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antoine", 
        "givenName": "Xavier", 
        "id": "sg:person.014300320417.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014300320417.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montreal", 
          "id": "https://www.grid.ac/institutes/grid.14848.31", 
          "name": [
            "School of Mathematics and Statistics, Carleton University, K1S 5B6, Ottawa, Canada", 
            "Centre de Recherches Math\u00e9matiques, Universit\u00e9 de Montr\u00e9al, H3T 1J4, Montreal, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorin", 
        "givenName": "Emmanuel", 
        "id": "sg:person.015722665547.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722665547.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10915-014-9902-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003403359", 
          "https://doi.org/10.1007/s10915-014-9902-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-18827-0_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004624200", 
          "https://doi.org/10.1007/978-3-319-18827-0_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.10.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008630006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2006.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025877509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2013.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031884657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9991(03)00097-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032591523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9991(03)00097-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032591523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2014.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036130074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05789-7_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041147266", 
          "https://doi.org/10.1007/978-3-319-05789-7_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2008.2008286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061566172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040606983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050642137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614290139559x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062876847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142903425409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827503422956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202510004891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/krm.2013.6.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071740931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00211-017-0897-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090385546", 
          "https://doi.org/10.1007/s00211-017-0897-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00211-017-0897-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090385546", 
          "https://doi.org/10.1007/s00211-017-0897-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/2017048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092153093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611974065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2018.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110880991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2018.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110880991"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "We derive some asymptotic estimates of the rate of convergence of Schwarz Waveform Relaxation domain decomposition methods for the Schr\u00f6dinger equation when using an arbitrary number of subdomains. Hence, we justify that under certain conditions, the rates of convergence mathematically obtained for two subdomains (Antoine et al. in ESAIM M2AN, 10.1051/m2an/2017048, 2018; Antoine and Lorin in Numer Math 137(4):923\u2013958, 2017; Antoine et al. in (submitted), 2018) are still asymptotically valid for a larger number of subdomains, as it is usually numerically observed (Halpern and Szeftel in Math Models Methods Appl Sci 20(12):2167\u20132199, 2010).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s42493-018-00012-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7738017", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1336333", 
        "issn": [
          "2524-4515", 
          "2524-4523"
        ], 
        "name": "Multiscale Science and Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Asymptotic Convergence Rates of Schwarz Waveform Relaxation Algorithms for Schr\u00f6dinger Equations with an Arbitrary Number of Subdomains", 
    "pagination": "34-46", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15b9fafee356d15d18fc3058db90a63636b2e3ec094225e9f5030e96140cecdd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s42493-018-00012-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111400792"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s42493-018-00012-y", 
      "https://app.dimensions.ai/details/publication/pub.1111400792"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99829_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs42493-018-00012-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s42493-018-00012-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N089c1877423b4072a2c67598c293ad6a
4 schema:citation sg:pub.10.1007/978-3-319-05789-7_44
5 sg:pub.10.1007/978-3-319-18827-0_51
6 sg:pub.10.1007/s00211-017-0897-3
7 sg:pub.10.1007/s10915-014-9902-5
8 https://doi.org/10.1016/j.cam.2018.12.006
9 https://doi.org/10.1016/j.cpc.2013.07.012
10 https://doi.org/10.1016/j.cpc.2014.06.026
11 https://doi.org/10.1016/j.jcp.2006.04.019
12 https://doi.org/10.1016/j.jcp.2013.10.045
13 https://doi.org/10.1016/s0021-9991(03)00097-4
14 https://doi.org/10.1051/m2an/2017048
15 https://doi.org/10.1090/cbms/017
16 https://doi.org/10.1109/tcsi.2008.2008286
17 https://doi.org/10.1137/040606983
18 https://doi.org/10.1137/050642137
19 https://doi.org/10.1137/1.9781611974065
20 https://doi.org/10.1137/s003614290139559x
21 https://doi.org/10.1137/s0036142903425409
22 https://doi.org/10.1137/s1064827503422956
23 https://doi.org/10.1142/s0218202510004891
24 https://doi.org/10.3934/krm.2013.6.1
25 schema:datePublished 2019-01
26 schema:datePublishedReg 2019-01-01
27 schema:description We derive some asymptotic estimates of the rate of convergence of Schwarz Waveform Relaxation domain decomposition methods for the Schrödinger equation when using an arbitrary number of subdomains. Hence, we justify that under certain conditions, the rates of convergence mathematically obtained for two subdomains (Antoine et al. in ESAIM M2AN, 10.1051/m2an/2017048, 2018; Antoine and Lorin in Numer Math 137(4):923–958, 2017; Antoine et al. in (submitted), 2018) are still asymptotically valid for a larger number of subdomains, as it is usually numerically observed (Halpern and Szeftel in Math Models Methods Appl Sci 20(12):2167–2199, 2010).
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N46f26720c53f42d392a0a5b16aff388f
32 N9920e616670340a39f9e97a44ccad9ef
33 sg:journal.1336333
34 schema:name Asymptotic Convergence Rates of Schwarz Waveform Relaxation Algorithms for Schrödinger Equations with an Arbitrary Number of Subdomains
35 schema:pagination 34-46
36 schema:productId N0237467c64324dca91919894e1aa71b1
37 N8eab84b0821b4e2c9fadb875e91b2b3b
38 Ndec720dbe1a5430cb3e4da3035a68d9c
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111400792
40 https://doi.org/10.1007/s42493-018-00012-y
41 schema:sdDatePublished 2019-04-11T09:37
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N6c67f43ae66b41008c6be330daded0b2
44 schema:url https://link.springer.com/10.1007%2Fs42493-018-00012-y
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0237467c64324dca91919894e1aa71b1 schema:name readcube_id
49 schema:value 15b9fafee356d15d18fc3058db90a63636b2e3ec094225e9f5030e96140cecdd
50 rdf:type schema:PropertyValue
51 N089c1877423b4072a2c67598c293ad6a rdf:first sg:person.014300320417.38
52 rdf:rest N2980ef574d2d4ac89c77e936de90282a
53 N2980ef574d2d4ac89c77e936de90282a rdf:first sg:person.015722665547.54
54 rdf:rest rdf:nil
55 N46f26720c53f42d392a0a5b16aff388f schema:volumeNumber 1
56 rdf:type schema:PublicationVolume
57 N6c67f43ae66b41008c6be330daded0b2 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N8eab84b0821b4e2c9fadb875e91b2b3b schema:name doi
60 schema:value 10.1007/s42493-018-00012-y
61 rdf:type schema:PropertyValue
62 N9920e616670340a39f9e97a44ccad9ef schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 Ndec720dbe1a5430cb3e4da3035a68d9c schema:name dimensions_id
65 schema:value pub.1111400792
66 rdf:type schema:PropertyValue
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
71 schema:name Statistics
72 rdf:type schema:DefinedTerm
73 sg:grant.7738017 http://pending.schema.org/fundedItem sg:pub.10.1007/s42493-018-00012-y
74 rdf:type schema:MonetaryGrant
75 sg:journal.1336333 schema:issn 2524-4515
76 2524-4523
77 schema:name Multiscale Science and Engineering
78 rdf:type schema:Periodical
79 sg:person.014300320417.38 schema:affiliation https://www.grid.ac/institutes/grid.462063.5
80 schema:familyName Antoine
81 schema:givenName Xavier
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014300320417.38
83 rdf:type schema:Person
84 sg:person.015722665547.54 schema:affiliation https://www.grid.ac/institutes/grid.14848.31
85 schema:familyName Lorin
86 schema:givenName Emmanuel
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722665547.54
88 rdf:type schema:Person
89 sg:pub.10.1007/978-3-319-05789-7_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041147266
90 https://doi.org/10.1007/978-3-319-05789-7_44
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/978-3-319-18827-0_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004624200
93 https://doi.org/10.1007/978-3-319-18827-0_51
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00211-017-0897-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090385546
96 https://doi.org/10.1007/s00211-017-0897-3
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10915-014-9902-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003403359
99 https://doi.org/10.1007/s10915-014-9902-5
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.cam.2018.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110880991
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.cpc.2013.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031884657
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.cpc.2014.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036130074
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.jcp.2006.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025877509
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.jcp.2013.10.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008630006
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0021-9991(03)00097-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032591523
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1051/m2an/2017048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092153093
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1090/cbms/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698660
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tcsi.2008.2008286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061566172
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1137/040606983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844964
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1137/050642137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846616
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1137/1.9781611974065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556646
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1137/s003614290139559x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062876847
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1137/s0036142903425409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877030
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1137/s1064827503422956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884085
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1142/s0218202510004891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963237
132 rdf:type schema:CreativeWork
133 https://doi.org/10.3934/krm.2013.6.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740931
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.14848.31 schema:alternateName University of Montreal
136 schema:name Centre de Recherches Mathématiques, Université de Montréal, H3T 1J4, Montreal, Canada
137 School of Mathematics and Statistics, Carleton University, K1S 5B6, Ottawa, Canada
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.462063.5 schema:alternateName Institut Élie Cartan de Lorraine
140 schema:name Institut Elie Cartan de Lorraine, UMR CNRS 7502, Université de Lorraine, Inria Nancy-Grand Est, SPHINX Team, 54506, Vandoeuvre-lès-Nancy Cedex, France
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...