Ontology type: schema:ScholarlyArticle
2019-01
AUTHORSXavier Antoine, Emmanuel Lorin
ABSTRACTWe derive some asymptotic estimates of the rate of convergence of Schwarz Waveform Relaxation domain decomposition methods for the Schrödinger equation when using an arbitrary number of subdomains. Hence, we justify that under certain conditions, the rates of convergence mathematically obtained for two subdomains (Antoine et al. in ESAIM M2AN, 10.1051/m2an/2017048, 2018; Antoine and Lorin in Numer Math 137(4):923–958, 2017; Antoine et al. in (submitted), 2018) are still asymptotically valid for a larger number of subdomains, as it is usually numerically observed (Halpern and Szeftel in Math Models Methods Appl Sci 20(12):2167–2199, 2010). More... »
PAGES34-46
http://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y
DOIhttp://dx.doi.org/10.1007/s42493-018-00012-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111400792
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut \u00c9lie Cartan de Lorraine",
"id": "https://www.grid.ac/institutes/grid.462063.5",
"name": [
"Institut Elie Cartan de Lorraine, UMR CNRS 7502, Universit\u00e9 de Lorraine, Inria Nancy-Grand Est, SPHINX Team, 54506, Vandoeuvre-l\u00e8s-Nancy Cedex, France"
],
"type": "Organization"
},
"familyName": "Antoine",
"givenName": "Xavier",
"id": "sg:person.014300320417.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014300320417.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Montreal",
"id": "https://www.grid.ac/institutes/grid.14848.31",
"name": [
"School of Mathematics and Statistics, Carleton University, K1S 5B6, Ottawa, Canada",
"Centre de Recherches Math\u00e9matiques, Universit\u00e9 de Montr\u00e9al, H3T 1J4, Montreal, Canada"
],
"type": "Organization"
},
"familyName": "Lorin",
"givenName": "Emmanuel",
"id": "sg:person.015722665547.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722665547.54"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10915-014-9902-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003403359",
"https://doi.org/10.1007/s10915-014-9902-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-18827-0_51",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004624200",
"https://doi.org/10.1007/978-3-319-18827-0_51"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jcp.2013.10.045",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008630006"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jcp.2006.04.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025877509"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cpc.2013.07.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031884657"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0021-9991(03)00097-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032591523"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0021-9991(03)00097-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032591523"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cpc.2014.06.026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036130074"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-05789-7_44",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041147266",
"https://doi.org/10.1007/978-3-319-05789-7_44"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcsi.2008.2008286",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061566172"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/040606983",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062844964"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/050642137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062846616"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s003614290139559x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062876847"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0036142903425409",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062877030"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s1064827503422956",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062884085"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s0218202510004891",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062963237"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/krm.2013.6.1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071740931"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00211-017-0897-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090385546",
"https://doi.org/10.1007/s00211-017-0897-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00211-017-0897-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090385546",
"https://doi.org/10.1007/s00211-017-0897-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/m2an/2017048",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092153093"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1.9781611974065",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098556646"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/cbms/017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098698660"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cam.2018.12.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110880991"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cam.2018.12.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110880991"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-01",
"datePublishedReg": "2019-01-01",
"description": "We derive some asymptotic estimates of the rate of convergence of Schwarz Waveform Relaxation domain decomposition methods for the Schr\u00f6dinger equation when using an arbitrary number of subdomains. Hence, we justify that under certain conditions, the rates of convergence mathematically obtained for two subdomains (Antoine et al. in ESAIM M2AN, 10.1051/m2an/2017048, 2018; Antoine and Lorin in Numer Math 137(4):923\u2013958, 2017; Antoine et al. in (submitted), 2018) are still asymptotically valid for a larger number of subdomains, as it is usually numerically observed (Halpern and Szeftel in Math Models Methods Appl Sci 20(12):2167\u20132199, 2010).",
"genre": "research_article",
"id": "sg:pub.10.1007/s42493-018-00012-y",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7738017",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1336333",
"issn": [
"2524-4515",
"2524-4523"
],
"name": "Multiscale Science and Engineering",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "1"
}
],
"name": "Asymptotic Convergence Rates of Schwarz Waveform Relaxation Algorithms for Schr\u00f6dinger Equations with an Arbitrary Number of Subdomains",
"pagination": "34-46",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"15b9fafee356d15d18fc3058db90a63636b2e3ec094225e9f5030e96140cecdd"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s42493-018-00012-y"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111400792"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s42493-018-00012-y",
"https://app.dimensions.ai/details/publication/pub.1111400792"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99829_00000004.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs42493-018-00012-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42493-018-00012-y'
This table displays all metadata directly associated to this object as RDF triples.
141 TRIPLES
21 PREDICATES
48 URIs
19 LITERALS
7 BLANK NODES