Prediction and Assessment of Rock Burst Using Various Meta-heuristic Approaches View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-03-17

AUTHORS

Ramesht Shukla, Manoj Khandelwal, P. K. Kankar

ABSTRACT

One of the utmost severe mining catastrophes in underground hard rock mines is rock burst phenomena. It can lead to damage to mine openings and equipment as well as trigger accidents or even threat to life as well. Due to this, a number of researchers are forced to study some easy-to-use alternative methods to predict the rock burst occurrence. Nevertheless, due to the extremely multifaceted relation between mechanical, geological and geometric factors of the mines, the conventional prediction methods are not able to produce accurate results. With the expansion of machine learning methods, a revolution in the rock burst occurrence has become imaginable. In present study, three machine learning methods, namely XGBoost, decision tree and support vector machine, are utilized to predict the occurrence of rock burst in various underground projects. A total of 134 rock burst events were gathered together from various published literatures comprising maximum tangential stress (MTS), elastic energy index (EEI), uniaxial compressive strength and uniaxial tensile stress (UTS) that have been used to develop various machine learning models. The performance of machine learning methods is evaluated based on the accuracy, sensitivity and specificity of the rock burst prediction. More... »

PAGES

1375-1381

References to SciGraph publications

  • 2012-04-03. Evaluation of effect of blast design parameters on flyrock using artificial neural networks in NEURAL COMPUTING AND APPLICATIONS
  • 2017-10-16. True-Triaxial Experimental Study of the Evolutionary Features of the Acoustic Emissions and Sounds of Rockburst Processes in ROCK MECHANICS AND ROCK ENGINEERING
  • 2018-06-16. Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques in ENGINEERING WITH COMPUTERS
  • 2019-01-30. Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques in ENGINEERING WITH COMPUTERS
  • 2018-02-16. A Principal Component Analysis/Fuzzy Comprehensive Evaluation for Rockburst Potential in Kimberlite in PURE AND APPLIED GEOPHYSICS
  • 2016-04-25. A new model based on gene expression programming to estimate air flow in a single rock joint in ENVIRONMENTAL EARTH SCIENCES
  • 2015-03-24. Discrimination of Mine Seismic Events and Blasts Using the Fisher Classifier, Naive Bayesian Classifier and Logistic Regression in ROCK MECHANICS AND ROCK ENGINEERING
  • 2020-09-24. Automated bearing fault classification based on discrete wavelet transform method in LIFE CYCLE RELIABILITY AND SAFETY ENGINEERING
  • 2015-09-18. Mining induced strata movement and roof behavior in underground coal mine in GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES
  • 2018-07-18. Evaluation of burst liability in kimberlite using support vector machine in ACTA GEOPHYSICA
  • 2017-11-22. Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples in ENGINEERING WITH COMPUTERS
  • 2018-09-22. A 3D model of hydraulic fracturing and microseismicity in anisotropic stress fields in GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES
  • 2019-01-09. Evaluation of rockburst occurrence and intensity in underground structures using decision tree approach in ENGINEERING WITH COMPUTERS
  • 2020-03-13. A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model in ENGINEERING WITH COMPUTERS
  • 2012-07-12. Backbreak prediction in the Chadormalu iron mine using artificial neural network in NEURAL COMPUTING AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s42461-021-00415-w

    DOI

    http://dx.doi.org/10.1007/s42461-021-00415-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1136469568


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Computing, National University of Singapore, Singapore, Singapore", 
              "id": "http://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "School of Computing, National University of Singapore, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shukla", 
            "givenName": "Ramesht", 
            "id": "sg:person.015435671103.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015435671103.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, Information Technology and Physical Sciences, Federation University Australia, 3350, Ballarat, VIC, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1040.5", 
              "name": [
                "School of Engineering, Information Technology and Physical Sciences, Federation University Australia, 3350, Ballarat, VIC, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khandelwal", 
            "givenName": "Manoj", 
            "id": "sg:person.07445446221.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445446221.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "System Dynamics Lab, Discipline of Mechanical Engineering, Indian Institute of Technology Indore, 453552, Indore, India", 
              "id": "http://www.grid.ac/institutes/grid.450280.b", 
              "name": [
                "System Dynamics Lab, Discipline of Mechanical Engineering, Indian Institute of Technology Indore, 453552, Indore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kankar", 
            "givenName": "P. K.", 
            "id": "sg:person.011621346722.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11600-018-0178-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105681424", 
              "https://doi.org/10.1007/s11600-018-0178-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-020-01003-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125635352", 
              "https://doi.org/10.1007/s00366-020-01003-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-1038-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016800802", 
              "https://doi.org/10.1007/s00521-012-1038-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-015-0733-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004644424", 
              "https://doi.org/10.1007/s00603-015-0733-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00024-018-1790-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101081016", 
              "https://doi.org/10.1007/s00024-018-1790-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40948-018-0096-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107186449", 
              "https://doi.org/10.1007/s40948-018-0096-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-017-0541-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092912983", 
              "https://doi.org/10.1007/s00366-017-0541-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40948-015-0010-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010352481", 
              "https://doi.org/10.1007/s40948-015-0010-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-019-00711-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111778658", 
              "https://doi.org/10.1007/s00366-019-00711-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-5524-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039856740", 
              "https://doi.org/10.1007/s12665-016-5524-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41872-020-00151-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131169354", 
              "https://doi.org/10.1007/s41872-020-00151-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-0917-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044702409", 
              "https://doi.org/10.1007/s00521-012-0917-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-00695-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111309186", 
              "https://doi.org/10.1007/s00366-018-00695-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-017-1344-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092239657", 
              "https://doi.org/10.1007/s00603-017-1344-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0624-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104694460", 
              "https://doi.org/10.1007/s00366-018-0624-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-03-17", 
        "datePublishedReg": "2021-03-17", 
        "description": "One of the utmost severe mining catastrophes in underground hard rock mines is rock burst phenomena. It can lead to damage to mine openings and equipment as well as trigger accidents or even threat to life as well. Due to this, a number of researchers are forced to study some easy-to-use alternative methods to predict the rock burst occurrence. Nevertheless, due to the extremely multifaceted relation between mechanical, geological and geometric factors of the mines, the conventional prediction methods are not able to produce accurate results. With the expansion of machine learning methods, a revolution in the rock burst occurrence has become imaginable. In present study, three machine learning methods, namely XGBoost, decision tree and support vector machine, are utilized to predict the occurrence of rock burst in various underground projects. A total of 134 rock burst events were gathered together from various published literatures comprising maximum tangential stress (MTS), elastic energy index (EEI), uniaxial compressive strength and uniaxial tensile stress (UTS) that have been used to develop various machine learning models. The performance of machine learning methods is evaluated based on the accuracy, sensitivity and specificity of the rock burst prediction.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s42461-021-00415-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052190", 
            "issn": [
              "2524-3462", 
              "2673-6489"
            ], 
            "name": "Mining, Metallurgy & Exploration", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "keywords": [
          "maximum tangential stress", 
          "elastic energy index", 
          "uniaxial tensile stress", 
          "underground hard rock mines", 
          "rock burst events", 
          "hard rock mines", 
          "rock burst prediction", 
          "uniaxial compressive strength", 
          "rock burst phenomena", 
          "compressive strength", 
          "rock burst", 
          "tensile stress", 
          "underground projects", 
          "tangential stress", 
          "conventional prediction methods", 
          "occurrence of rock", 
          "rock mines", 
          "mine openings", 
          "burst prediction", 
          "trigger accidents", 
          "energy index", 
          "geometric factors", 
          "burst phenomenon", 
          "prediction method", 
          "accurate results", 
          "mine", 
          "burst events", 
          "machine learning methods", 
          "machine", 
          "meta-heuristic approach", 
          "method", 
          "stress", 
          "vector machine", 
          "equipment", 
          "prediction", 
          "strength", 
          "rocks", 
          "alternative method", 
          "performance", 
          "number of researchers", 
          "accuracy", 
          "learning methods", 
          "accidents", 
          "phenomenon", 
          "model", 
          "results", 
          "damage", 
          "expansion", 
          "XGBoost", 
          "approach", 
          "opening", 
          "sensitivity", 
          "project", 
          "decision tree", 
          "occurrence", 
          "present study", 
          "number", 
          "published literature", 
          "bursts", 
          "assessment", 
          "revolution", 
          "study", 
          "researchers", 
          "factors", 
          "index", 
          "literature", 
          "life", 
          "relation", 
          "catastrophe", 
          "threat", 
          "events", 
          "trees", 
          "multifaceted relation", 
          "total", 
          "specificity"
        ], 
        "name": "Prediction and Assessment of Rock Burst Using Various Meta-heuristic Approaches", 
        "pagination": "1375-1381", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1136469568"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s42461-021-00415-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s42461-021-00415-w", 
          "https://app.dimensions.ai/details/publication/pub.1136469568"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_895.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s42461-021-00415-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42461-021-00415-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42461-021-00415-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42461-021-00415-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42461-021-00415-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      22 PREDICATES      115 URIs      92 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s42461-021-00415-w schema:about anzsrc-for:09
    2 anzsrc-for:0914
    3 schema:author Nb559247bb35344808c3174b5df57ed8b
    4 schema:citation sg:pub.10.1007/s00024-018-1790-4
    5 sg:pub.10.1007/s00366-017-0541-y
    6 sg:pub.10.1007/s00366-018-00695-9
    7 sg:pub.10.1007/s00366-018-0624-4
    8 sg:pub.10.1007/s00366-019-00711-6
    9 sg:pub.10.1007/s00366-020-01003-0
    10 sg:pub.10.1007/s00521-012-0917-2
    11 sg:pub.10.1007/s00521-012-1038-7
    12 sg:pub.10.1007/s00603-015-0733-y
    13 sg:pub.10.1007/s00603-017-1344-6
    14 sg:pub.10.1007/s11600-018-0178-2
    15 sg:pub.10.1007/s12665-016-5524-6
    16 sg:pub.10.1007/s40948-015-0010-2
    17 sg:pub.10.1007/s40948-018-0096-4
    18 sg:pub.10.1007/s41872-020-00151-y
    19 schema:datePublished 2021-03-17
    20 schema:datePublishedReg 2021-03-17
    21 schema:description One of the utmost severe mining catastrophes in underground hard rock mines is rock burst phenomena. It can lead to damage to mine openings and equipment as well as trigger accidents or even threat to life as well. Due to this, a number of researchers are forced to study some easy-to-use alternative methods to predict the rock burst occurrence. Nevertheless, due to the extremely multifaceted relation between mechanical, geological and geometric factors of the mines, the conventional prediction methods are not able to produce accurate results. With the expansion of machine learning methods, a revolution in the rock burst occurrence has become imaginable. In present study, three machine learning methods, namely XGBoost, decision tree and support vector machine, are utilized to predict the occurrence of rock burst in various underground projects. A total of 134 rock burst events were gathered together from various published literatures comprising maximum tangential stress (MTS), elastic energy index (EEI), uniaxial compressive strength and uniaxial tensile stress (UTS) that have been used to develop various machine learning models. The performance of machine learning methods is evaluated based on the accuracy, sensitivity and specificity of the rock burst prediction.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N80d32e599da54f1a88eff8f4d275bf60
    26 N93f532eb4ac443fab57c1e89afe9595b
    27 sg:journal.1052190
    28 schema:keywords XGBoost
    29 accidents
    30 accuracy
    31 accurate results
    32 alternative method
    33 approach
    34 assessment
    35 burst events
    36 burst phenomenon
    37 burst prediction
    38 bursts
    39 catastrophe
    40 compressive strength
    41 conventional prediction methods
    42 damage
    43 decision tree
    44 elastic energy index
    45 energy index
    46 equipment
    47 events
    48 expansion
    49 factors
    50 geometric factors
    51 hard rock mines
    52 index
    53 learning methods
    54 life
    55 literature
    56 machine
    57 machine learning methods
    58 maximum tangential stress
    59 meta-heuristic approach
    60 method
    61 mine
    62 mine openings
    63 model
    64 multifaceted relation
    65 number
    66 number of researchers
    67 occurrence
    68 occurrence of rock
    69 opening
    70 performance
    71 phenomenon
    72 prediction
    73 prediction method
    74 present study
    75 project
    76 published literature
    77 relation
    78 researchers
    79 results
    80 revolution
    81 rock burst
    82 rock burst events
    83 rock burst phenomena
    84 rock burst prediction
    85 rock mines
    86 rocks
    87 sensitivity
    88 specificity
    89 strength
    90 stress
    91 study
    92 tangential stress
    93 tensile stress
    94 threat
    95 total
    96 trees
    97 trigger accidents
    98 underground hard rock mines
    99 underground projects
    100 uniaxial compressive strength
    101 uniaxial tensile stress
    102 vector machine
    103 schema:name Prediction and Assessment of Rock Burst Using Various Meta-heuristic Approaches
    104 schema:pagination 1375-1381
    105 schema:productId Nb74ec0286a8c4cb2ad26292f837d0b69
    106 Ne2da97a122a94695a5ee5e0490e18fd2
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136469568
    108 https://doi.org/10.1007/s42461-021-00415-w
    109 schema:sdDatePublished 2022-06-01T22:24
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher Nb884c5a548d14ce283c998be51144bb4
    112 schema:url https://doi.org/10.1007/s42461-021-00415-w
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N80d32e599da54f1a88eff8f4d275bf60 schema:volumeNumber 38
    117 rdf:type schema:PublicationVolume
    118 N93f532eb4ac443fab57c1e89afe9595b schema:issueNumber 3
    119 rdf:type schema:PublicationIssue
    120 Na353896444034d4b857f78bf12bca469 rdf:first sg:person.07445446221.06
    121 rdf:rest Nd74f2d80b66d4d9abfbf972f56bb445d
    122 Nb559247bb35344808c3174b5df57ed8b rdf:first sg:person.015435671103.52
    123 rdf:rest Na353896444034d4b857f78bf12bca469
    124 Nb74ec0286a8c4cb2ad26292f837d0b69 schema:name dimensions_id
    125 schema:value pub.1136469568
    126 rdf:type schema:PropertyValue
    127 Nb884c5a548d14ce283c998be51144bb4 schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 Nd74f2d80b66d4d9abfbf972f56bb445d rdf:first sg:person.011621346722.57
    130 rdf:rest rdf:nil
    131 Ne2da97a122a94695a5ee5e0490e18fd2 schema:name doi
    132 schema:value 10.1007/s42461-021-00415-w
    133 rdf:type schema:PropertyValue
    134 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Engineering
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Resources Engineering and Extractive Metallurgy
    139 rdf:type schema:DefinedTerm
    140 sg:journal.1052190 schema:issn 2524-3462
    141 2673-6489
    142 schema:name Mining, Metallurgy & Exploration
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.011621346722.57 schema:affiliation grid-institutes:grid.450280.b
    146 schema:familyName Kankar
    147 schema:givenName P. K.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57
    149 rdf:type schema:Person
    150 sg:person.015435671103.52 schema:affiliation grid-institutes:grid.4280.e
    151 schema:familyName Shukla
    152 schema:givenName Ramesht
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015435671103.52
    154 rdf:type schema:Person
    155 sg:person.07445446221.06 schema:affiliation grid-institutes:grid.1040.5
    156 schema:familyName Khandelwal
    157 schema:givenName Manoj
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445446221.06
    159 rdf:type schema:Person
    160 sg:pub.10.1007/s00024-018-1790-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101081016
    161 https://doi.org/10.1007/s00024-018-1790-4
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00366-017-0541-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092912983
    164 https://doi.org/10.1007/s00366-017-0541-y
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00366-018-00695-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111309186
    167 https://doi.org/10.1007/s00366-018-00695-9
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00366-018-0624-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104694460
    170 https://doi.org/10.1007/s00366-018-0624-4
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00366-019-00711-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111778658
    173 https://doi.org/10.1007/s00366-019-00711-6
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00366-020-01003-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125635352
    176 https://doi.org/10.1007/s00366-020-01003-0
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00521-012-0917-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044702409
    179 https://doi.org/10.1007/s00521-012-0917-2
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00521-012-1038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016800802
    182 https://doi.org/10.1007/s00521-012-1038-7
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00603-015-0733-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004644424
    185 https://doi.org/10.1007/s00603-015-0733-y
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00603-017-1344-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092239657
    188 https://doi.org/10.1007/s00603-017-1344-6
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s11600-018-0178-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105681424
    191 https://doi.org/10.1007/s11600-018-0178-2
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s12665-016-5524-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039856740
    194 https://doi.org/10.1007/s12665-016-5524-6
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s40948-015-0010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010352481
    197 https://doi.org/10.1007/s40948-015-0010-2
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s40948-018-0096-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107186449
    200 https://doi.org/10.1007/s40948-018-0096-4
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s41872-020-00151-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1131169354
    203 https://doi.org/10.1007/s41872-020-00151-y
    204 rdf:type schema:CreativeWork
    205 grid-institutes:grid.1040.5 schema:alternateName School of Engineering, Information Technology and Physical Sciences, Federation University Australia, 3350, Ballarat, VIC, Australia
    206 schema:name School of Engineering, Information Technology and Physical Sciences, Federation University Australia, 3350, Ballarat, VIC, Australia
    207 rdf:type schema:Organization
    208 grid-institutes:grid.4280.e schema:alternateName School of Computing, National University of Singapore, Singapore, Singapore
    209 schema:name School of Computing, National University of Singapore, Singapore, Singapore
    210 rdf:type schema:Organization
    211 grid-institutes:grid.450280.b schema:alternateName System Dynamics Lab, Discipline of Mechanical Engineering, Indian Institute of Technology Indore, 453552, Indore, India
    212 schema:name System Dynamics Lab, Discipline of Mechanical Engineering, Indian Institute of Technology Indore, 453552, Indore, India
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...