Combined Effect of Operating Parameters on Separation Efficiency and Kinetics of Copper Flotation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ataallah Bahrami, Yousef Ghorbani, Mohammad Raouf Hosseini, Fatemeh Kazemi, Morteza Abdollahi, Abolfazl Danesh

ABSTRACT

This study aims to investigate the effects of operational variables on concentrate grade, recovery, separation efficiency, and kinetic parameters of the copper flotation process. For this purpose, the effects of the pulp solids content, collector and frother dosage, and preparation and concentrate collection time were studied using a Taguchi experimental design. The results of statistical analyses indicated that the concentrate collection time and pulp density were the most influential parameters on concentrate grade. Considering copper recovery, concentrate collection time, collector dosage, and pulp density were the most significant variables, in decreasing order of importance. Also, the separation efficiency was mostly influenced by the concentrate collection time. Furthermore, kinetic studies showed that the second-order rectangular distribution model perfectly matched the experimental flotation data. The highest kinetic constant of 0.0756 s−1 was obtained from the test, which was performed with 35% solids content and 40 and 20 g/t collector and frother, respectively. The highest predicted copper recovery of 99.57% was obtained from the test at 30% solids content, and the collector and frother dosages of 40 and 15 g/t, respectively. More... »

PAGES

409-421

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s42461-018-0005-y

DOI

http://dx.doi.org/10.1007/s42461-018-0005-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107205866


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Urmia University", 
          "id": "https://www.grid.ac/institutes/grid.412763.5", 
          "name": [
            "Department of Mining Engineering, Urmia University, P.O. Box 57561/51818, Urmia, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bahrami", 
        "givenName": "Ataallah", 
        "id": "sg:person.07555635740.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07555635740.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lule\u00e5 University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6926.b", 
          "name": [
            "Department of Civil, Environmental and Natural Resources Engineering, Lule\u00e5 University of Technology, SE-971 87, Lule\u00e5, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghorbani", 
        "givenName": "Yousef", 
        "id": "sg:person.014652025740.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652025740.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Isfahan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411751.7", 
          "name": [
            "Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hosseini", 
        "givenName": "Mohammad Raouf", 
        "id": "sg:person.011745157627.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011745157627.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Urmia University", 
          "id": "https://www.grid.ac/institutes/grid.412763.5", 
          "name": [
            "Department of Mining Engineering, Urmia University, P.O. Box 57561/51818, Urmia, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazemi", 
        "givenName": "Fatemeh", 
        "id": "sg:person.015531441740.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531441740.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Urmia University", 
          "id": "https://www.grid.ac/institutes/grid.412763.5", 
          "name": [
            "Department of Mining Engineering, Urmia University, P.O. Box 57561/51818, Urmia, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdollahi", 
        "givenName": "Morteza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mineral Processing Plant, Sungun Mine, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danesh", 
        "givenName": "Abolfazl", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0892-6875(98)00005-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjce.5450510207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001369729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjce.5450510207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001369729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmrt.2015.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001701931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02726351.2016.1165323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003268839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0892-6875(00)00163-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003650949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08827508.2010.509678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006177792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2008.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006935661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.minpro.2006.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007955145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-5910(74)80044-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008354501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2014.09.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010544947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2011.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010808859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2013.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012840222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11705-013-1356-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014585158", 
          "https://doi.org/10.1007/s11705-013-1356-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2007.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019778774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2007.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019984490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2008.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021952577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08827508.2015.1115991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024065290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2003.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026743093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08827500306898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027096507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmst.2015.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027674077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2013.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029077451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2010.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033166840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-7516(76)90029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034882969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-7516(76)90029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034882969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.resconrec.2006.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036538167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2658-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041544334", 
          "https://doi.org/10.1007/978-94-011-2658-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2009.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043651115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2013.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047785060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/cmq.2010.49.4.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047987484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01496395.2016.1202980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048310786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(10)60657-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052385447"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "This study aims to investigate the effects of operational variables on concentrate grade, recovery, separation efficiency, and kinetic parameters of the copper flotation process. For this purpose, the effects of the pulp solids content, collector and frother dosage, and preparation and concentrate collection time were studied using a Taguchi experimental design. The results of statistical analyses indicated that the concentrate collection time and pulp density were the most influential parameters on concentrate grade. Considering copper recovery, concentrate collection time, collector dosage, and pulp density were the most significant variables, in decreasing order of importance. Also, the separation efficiency was mostly influenced by the concentrate collection time. Furthermore, kinetic studies showed that the second-order rectangular distribution model perfectly matched the experimental flotation data. The highest kinetic constant of 0.0756 s\u22121 was obtained from the test, which was performed with 35% solids content and 40 and 20 g/t collector and frother, respectively. The highest predicted copper recovery of 99.57% was obtained from the test at 30% solids content, and the collector and frother dosages of 40 and 15 g/t, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s42461-018-0005-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336321", 
        "issn": [
          "2524-3462", 
          "2524-3470"
        ], 
        "name": "Mining, Metallurgy & Exploration", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Combined Effect of Operating Parameters on Separation Efficiency and Kinetics of Copper Flotation", 
    "pagination": "409-421", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0f8516223ea10a0692140d30cc3a58d5c893bfd43c874d787482e38f0a51cace"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s42461-018-0005-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107205866"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s42461-018-0005-y", 
      "https://app.dimensions.ai/details/publication/pub.1107205866"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs42461-018-0005-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42461-018-0005-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42461-018-0005-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42461-018-0005-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42461-018-0005-y'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s42461-018-0005-y schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N25461a83eb444c2d926046af60abeca6
4 schema:citation sg:pub.10.1007/978-94-011-2658-8_8
5 sg:pub.10.1007/s11705-013-1356-z
6 https://doi.org/10.1002/cjce.5450510207
7 https://doi.org/10.1016/0032-5910(74)80044-6
8 https://doi.org/10.1016/0301-7516(76)90029-6
9 https://doi.org/10.1016/j.enconman.2010.02.019
10 https://doi.org/10.1016/j.fuel.2014.09.119
11 https://doi.org/10.1016/j.ijmst.2015.07.022
12 https://doi.org/10.1016/j.jmrt.2015.10.002
13 https://doi.org/10.1016/j.mineng.2003.10.018
14 https://doi.org/10.1016/j.mineng.2007.12.012
15 https://doi.org/10.1016/j.mineng.2008.03.015
16 https://doi.org/10.1016/j.mineng.2008.12.008
17 https://doi.org/10.1016/j.mineng.2009.11.005
18 https://doi.org/10.1016/j.mineng.2011.08.014
19 https://doi.org/10.1016/j.mineng.2013.04.024
20 https://doi.org/10.1016/j.mineng.2013.08.003
21 https://doi.org/10.1016/j.minpro.2006.10.009
22 https://doi.org/10.1016/j.powtec.2013.06.033
23 https://doi.org/10.1016/j.resconrec.2006.06.014
24 https://doi.org/10.1016/j.seppur.2007.08.023
25 https://doi.org/10.1016/s0892-6875(00)00163-1
26 https://doi.org/10.1016/s0892-6875(98)00005-3
27 https://doi.org/10.1016/s1003-6326(10)60657-7
28 https://doi.org/10.1080/01496395.2016.1202980
29 https://doi.org/10.1080/02726351.2016.1165323
30 https://doi.org/10.1080/08827500306898
31 https://doi.org/10.1080/08827508.2010.509678
32 https://doi.org/10.1080/08827508.2015.1115991
33 https://doi.org/10.1179/cmq.2010.49.4.337
34 schema:datePublished 2019-04
35 schema:datePublishedReg 2019-04-01
36 schema:description This study aims to investigate the effects of operational variables on concentrate grade, recovery, separation efficiency, and kinetic parameters of the copper flotation process. For this purpose, the effects of the pulp solids content, collector and frother dosage, and preparation and concentrate collection time were studied using a Taguchi experimental design. The results of statistical analyses indicated that the concentrate collection time and pulp density were the most influential parameters on concentrate grade. Considering copper recovery, concentrate collection time, collector dosage, and pulp density were the most significant variables, in decreasing order of importance. Also, the separation efficiency was mostly influenced by the concentrate collection time. Furthermore, kinetic studies showed that the second-order rectangular distribution model perfectly matched the experimental flotation data. The highest kinetic constant of 0.0756 s−1 was obtained from the test, which was performed with 35% solids content and 40 and 20 g/t collector and frother, respectively. The highest predicted copper recovery of 99.57% was obtained from the test at 30% solids content, and the collector and frother dosages of 40 and 15 g/t, respectively.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N465dade465de4392b04b349fa767c4ef
41 Nd4305f4111144239a7acfa5694654652
42 sg:journal.1336321
43 schema:name Combined Effect of Operating Parameters on Separation Efficiency and Kinetics of Copper Flotation
44 schema:pagination 409-421
45 schema:productId N18e9d2e776df49dc88800597f4705e15
46 N345fcf84f42045db811d65d1a3ca15be
47 N9988f182815d4d4cbc711bfe29fdf0c9
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107205866
49 https://doi.org/10.1007/s42461-018-0005-y
50 schema:sdDatePublished 2019-04-11T12:38
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N28b2109357e541e8989c6b77dba15d10
53 schema:url https://link.springer.com/10.1007%2Fs42461-018-0005-y
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N170a14ae36d24b8dbbfaef97ed98ae83 rdf:first sg:person.011745157627.25
58 rdf:rest N245388cdca4542a29bdfe3586b8a5511
59 N18e9d2e776df49dc88800597f4705e15 schema:name doi
60 schema:value 10.1007/s42461-018-0005-y
61 rdf:type schema:PropertyValue
62 N230e9c52b1fd481cb9352a5f88f037c9 rdf:first Ne79632d5645d4888a32e0b14bfdd3663
63 rdf:rest Naa271c4a888843178a946672791ad7e2
64 N245388cdca4542a29bdfe3586b8a5511 rdf:first sg:person.015531441740.20
65 rdf:rest N230e9c52b1fd481cb9352a5f88f037c9
66 N25461a83eb444c2d926046af60abeca6 rdf:first sg:person.07555635740.57
67 rdf:rest N6ff5c289954947bca7015de2beea0677
68 N28b2109357e541e8989c6b77dba15d10 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N345fcf84f42045db811d65d1a3ca15be schema:name readcube_id
71 schema:value 0f8516223ea10a0692140d30cc3a58d5c893bfd43c874d787482e38f0a51cace
72 rdf:type schema:PropertyValue
73 N3b235f5dc0964268bc70f342992d7b72 schema:affiliation Naffaa82e6dbe4ab7ad3e96f505d42237
74 schema:familyName Danesh
75 schema:givenName Abolfazl
76 rdf:type schema:Person
77 N465dade465de4392b04b349fa767c4ef schema:issueNumber 2
78 rdf:type schema:PublicationIssue
79 N6ff5c289954947bca7015de2beea0677 rdf:first sg:person.014652025740.88
80 rdf:rest N170a14ae36d24b8dbbfaef97ed98ae83
81 N9988f182815d4d4cbc711bfe29fdf0c9 schema:name dimensions_id
82 schema:value pub.1107205866
83 rdf:type schema:PropertyValue
84 Naa271c4a888843178a946672791ad7e2 rdf:first N3b235f5dc0964268bc70f342992d7b72
85 rdf:rest rdf:nil
86 Naffaa82e6dbe4ab7ad3e96f505d42237 schema:name Mineral Processing Plant, Sungun Mine, Tabriz, Iran
87 rdf:type schema:Organization
88 Nd4305f4111144239a7acfa5694654652 schema:volumeNumber 36
89 rdf:type schema:PublicationVolume
90 Ne79632d5645d4888a32e0b14bfdd3663 schema:affiliation https://www.grid.ac/institutes/grid.412763.5
91 schema:familyName Abdollahi
92 schema:givenName Morteza
93 rdf:type schema:Person
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
98 schema:name Resources Engineering and Extractive Metallurgy
99 rdf:type schema:DefinedTerm
100 sg:journal.1336321 schema:issn 2524-3462
101 2524-3470
102 schema:name Mining, Metallurgy & Exploration
103 rdf:type schema:Periodical
104 sg:person.011745157627.25 schema:affiliation https://www.grid.ac/institutes/grid.411751.7
105 schema:familyName Hosseini
106 schema:givenName Mohammad Raouf
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011745157627.25
108 rdf:type schema:Person
109 sg:person.014652025740.88 schema:affiliation https://www.grid.ac/institutes/grid.6926.b
110 schema:familyName Ghorbani
111 schema:givenName Yousef
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652025740.88
113 rdf:type schema:Person
114 sg:person.015531441740.20 schema:affiliation https://www.grid.ac/institutes/grid.412763.5
115 schema:familyName Kazemi
116 schema:givenName Fatemeh
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531441740.20
118 rdf:type schema:Person
119 sg:person.07555635740.57 schema:affiliation https://www.grid.ac/institutes/grid.412763.5
120 schema:familyName Bahrami
121 schema:givenName Ataallah
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07555635740.57
123 rdf:type schema:Person
124 sg:pub.10.1007/978-94-011-2658-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041544334
125 https://doi.org/10.1007/978-94-011-2658-8_8
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11705-013-1356-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014585158
128 https://doi.org/10.1007/s11705-013-1356-z
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/cjce.5450510207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001369729
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0032-5910(74)80044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008354501
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0301-7516(76)90029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034882969
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.enconman.2010.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033166840
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.fuel.2014.09.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544947
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ijmst.2015.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027674077
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jmrt.2015.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001701931
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.mineng.2003.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026743093
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.mineng.2007.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019778774
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.mineng.2008.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006935661
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.mineng.2008.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021952577
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.mineng.2009.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043651115
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.mineng.2011.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010808859
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.mineng.2013.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047785060
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.mineng.2013.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012840222
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.minpro.2006.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007955145
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.powtec.2013.06.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029077451
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.resconrec.2006.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036538167
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.seppur.2007.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019984490
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0892-6875(00)00163-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003650949
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0892-6875(98)00005-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001170134
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s1003-6326(10)60657-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052385447
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1080/01496395.2016.1202980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048310786
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1080/02726351.2016.1165323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003268839
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/08827500306898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027096507
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/08827508.2010.509678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006177792
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/08827508.2015.1115991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024065290
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1179/cmq.2010.49.4.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047987484
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.411751.7 schema:alternateName Isfahan University of Technology
187 schema:name Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.412763.5 schema:alternateName Urmia University
190 schema:name Department of Mining Engineering, Urmia University, P.O. Box 57561/51818, Urmia, Iran
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.6926.b schema:alternateName Luleå University of Technology
193 schema:name Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...