FTIR-DRIFTS-based prediction of β-carotene, α-tocopherol and l-ascorbic acid in mango (Mangifera indica L.) fruit pulp View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Kennedy Olale, Waudo Walyambillah, Salim Ali Mohammed, Andrew Sila, Keith Shepherd

ABSTRACT

Mango fruits contain substantial vitamins and dietary fibre. Vitamins vary among and within fruits depending on cultivar type and ripening stage. Conventional techniques of vitamins analysis are based on High Pressure Liquid Chromatography, which are costly and laborious. This study evaluated the potential of Fourier transform infrared-diffuse reflectance spectroscopy (FTIR-DRIFTS) technique in predicting β-carotene, α-tocopherol and l-ascorbic acid in pulps of four mango cultivar types (‘Apple’, ‘Kent’, ‘Ngowe’, and ‘Tommy Atkins’). Combination of ran dom forest (RF) and first derivative spectra developed the predictive models. Factorial ANOVA examined the interaction effect of cultivar type, site (‘Thika’, ‘Embu’ and ‘Machakos), and fruit canopy position (sun exposed/within crown) on β-carotene, α-tocopherol and l-ascorbic acid contents. RF Models gave R2 = 0.97, RMSE = 2.27, RPD = 0.72 for β-carotene; R2 = 0.98, RMSE = 0.26, RPD = 0.30 for α-tocopherol and R2 = 0.96, RMSE = 0.51, RPD = 1.96 for l-ascorbic acid. Generally cultivar type affected vitamin C, F (3, 282) = 7.812, p < 0.05. Apple and Tommy Atkins had higher mean vitamins than Ngowe and Kent. In Machakos, within canopy fruits had higher β-carotene than sun-exposed fruits, F (5, 257) = 2.328, p = 0.043. However, interactions between fruit position, site and cultivar did not affect α-tocopherol and vitamin C. In Thika, Tommy Atkins at fully ripe stage had higher vitamin C than at intermediate maturity stage, F (2, 143) = 7.328, p = 0.01. These results show that FTIR-DRIFTS spectroscopy is a high-throughput method that can be used to predict mango fruit vitamins of in a large data set. More... »

PAGES

279

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s42452-019-0297-7

DOI

http://dx.doi.org/10.1007/s42452-019-0297-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112460801


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "World Agroforestry Centre", 
          "id": "https://www.grid.ac/institutes/grid.435643.3", 
          "name": [
            "Department of Chemistry, School of Pure and Applied Sciences, Kisii University, P.O. Box 408, 40200, Kisii, Kenya", 
            "Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya", 
            "World Agroforestry Centre (ICRAF), P.O. Box 30677, 00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olale", 
        "givenName": "Kennedy", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jomo Kenyatta University of Agriculture and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411943.a", 
          "name": [
            "Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walyambillah", 
        "givenName": "Waudo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jomo Kenyatta University of Agriculture and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411943.a", 
          "name": [
            "Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammed", 
        "givenName": "Salim Ali", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Agroforestry Centre", 
          "id": "https://www.grid.ac/institutes/grid.435643.3", 
          "name": [
            "World Agroforestry Centre (ICRAF), P.O. Box 30677, 00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sila", 
        "givenName": "Andrew", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Agroforestry Centre", 
          "id": "https://www.grid.ac/institutes/grid.435643.3", 
          "name": [
            "World Agroforestry Centre (ICRAF), P.O. Box 30677, 00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shepherd", 
        "givenName": "Keith", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-2621.2005.tb11496.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000124288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2005.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001667454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2005.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001667454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156594", 
          "https://doi.org/10.1186/1471-2105-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156594", 
          "https://doi.org/10.1186/1471-2105-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0308-8146(88)90115-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006526673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0308-8146(88)90115-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006526673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02571862.2004.10635014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006852032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1601059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013743975", 
          "https://doi.org/10.1038/sj.ejcn.1601059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1601059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013743975", 
          "https://doi.org/10.1038/sj.ejcn.1601059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2012.713142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014022176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scienta.2009.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016686347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-010-0425-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016888104", 
          "https://doi.org/10.1007/s11104-010-0425-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-010-0425-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016888104", 
          "https://doi.org/10.1007/s11104-010-0425-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.postharvbio.2008.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017999086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0889-1575(90)90018-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021217716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.postharvbio.2008.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023130383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-9422(02)00710-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025087492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03670240903308604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026276044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-2031(98)00046-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027613320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0963-9969(01)00092-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028404162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0308-8146(97)00196-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028944174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/87559120903153524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033642853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfca.2003.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036413850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abbi.2000.2172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038473028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/asr-100100840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038915750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0010(199709)75:1<1::aid-jsfa842>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039091940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2006.06.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039162628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039294944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408390802565889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040708154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6390-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040782147", 
          "https://doi.org/10.1007/978-1-4614-6390-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6390-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040782147", 
          "https://doi.org/10.1007/978-1-4614-6390-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfca.2008.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042862989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02522884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045121881", 
          "https://doi.org/10.1007/bf02522884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1881-8366(12)80012-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052650405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar030069m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055149727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar030069m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055149727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf011575y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055899532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf011575y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055899532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf052889e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055904626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf052889e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055904626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf9702860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055929484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf9702860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055929484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1969.10490666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17660/actahortic.2009.820.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068419116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17660/actahortic.2013.992.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068430808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40543-017-0130-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092648103", 
          "https://doi.org/10.1186/s40543-017-0130-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21273/hortsci.28.10.992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111883911"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Mango fruits contain substantial vitamins and dietary fibre. Vitamins vary among and within fruits depending on cultivar type and ripening stage. Conventional techniques of vitamins analysis are based on High Pressure Liquid Chromatography, which are costly and laborious. This study evaluated the potential of Fourier transform infrared-diffuse reflectance spectroscopy (FTIR-DRIFTS) technique in predicting \u03b2-carotene, \u03b1-tocopherol and l-ascorbic acid in pulps of four mango cultivar types (\u2018Apple\u2019, \u2018Kent\u2019, \u2018Ngowe\u2019, and \u2018Tommy Atkins\u2019). Combination of ran dom forest (RF) and first derivative spectra developed the predictive models. Factorial ANOVA examined the interaction effect of cultivar type, site (\u2018Thika\u2019, \u2018Embu\u2019 and \u2018Machakos), and fruit canopy position (sun exposed/within crown) on \u03b2-carotene, \u03b1-tocopherol and l-ascorbic acid contents. RF Models gave R2 = 0.97, RMSE = 2.27, RPD = 0.72 for \u03b2-carotene; R2 = 0.98, RMSE = 0.26, RPD = 0.30 for \u03b1-tocopherol and R2 = 0.96, RMSE = 0.51, RPD = 1.96 for l-ascorbic acid. Generally cultivar type affected vitamin C, F (3, 282) = 7.812, p < 0.05. Apple and Tommy Atkins had higher mean vitamins than Ngowe and Kent. In Machakos, within canopy fruits had higher \u03b2-carotene than sun-exposed fruits, F (5, 257) = 2.328, p = 0.043. However, interactions between fruit position, site and cultivar did not affect \u03b1-tocopherol and vitamin C. In Thika, Tommy Atkins at fully ripe stage had higher vitamin C than at intermediate maturity stage, F (2, 143) = 7.328, p = 0.01. These results show that FTIR-DRIFTS spectroscopy is a high-throughput method that can be used to predict mango fruit vitamins of in a large data set.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s42452-019-0297-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336318", 
        "issn": [
          "2523-3963", 
          "2523-3971"
        ], 
        "name": "SN Applied Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "FTIR-DRIFTS-based prediction of \u03b2-carotene, \u03b1-tocopherol and l-ascorbic acid in mango (Mangifera indica L.) fruit pulp", 
    "pagination": "279", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f919007664f78a0c6e8daeca7263324b9ea86c9a8f77042f1815d34f738e79a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s42452-019-0297-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112460801"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s42452-019-0297-7", 
      "https://app.dimensions.ai/details/publication/pub.1112460801"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs42452-019-0297-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42452-019-0297-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42452-019-0297-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42452-019-0297-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42452-019-0297-7'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s42452-019-0297-7 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nddba307efc394385abcbb5a15095ec09
4 schema:citation sg:pub.10.1007/978-1-4614-6390-0
5 sg:pub.10.1007/bf02522884
6 sg:pub.10.1007/s11104-010-0425-z
7 sg:pub.10.1023/a:1010933404324
8 sg:pub.10.1038/sj.ejcn.1601059
9 sg:pub.10.1186/1471-2105-7-3
10 sg:pub.10.1186/s40543-017-0130-0
11 https://doi.org/10.1002/(sici)1097-0010(199709)75:1<1::aid-jsfa842>3.0.co;2-r
12 https://doi.org/10.1002/jsfa.849
13 https://doi.org/10.1006/abbi.2000.2172
14 https://doi.org/10.1016/0308-8146(88)90115-x
15 https://doi.org/10.1016/0889-1575(90)90018-h
16 https://doi.org/10.1016/j.foodchem.2005.04.012
17 https://doi.org/10.1016/j.foodchem.2006.06.036
18 https://doi.org/10.1016/j.jfca.2003.12.008
19 https://doi.org/10.1016/j.jfca.2008.10.007
20 https://doi.org/10.1016/j.postharvbio.2008.05.001
21 https://doi.org/10.1016/j.postharvbio.2008.09.003
22 https://doi.org/10.1016/j.scienta.2009.09.004
23 https://doi.org/10.1016/s0031-9422(02)00710-0
24 https://doi.org/10.1016/s0308-8146(97)00196-9
25 https://doi.org/10.1016/s0924-2031(98)00046-0
26 https://doi.org/10.1016/s0963-9969(01)00092-8
27 https://doi.org/10.1016/s1881-8366(12)80012-7
28 https://doi.org/10.1021/ar030069m
29 https://doi.org/10.1021/jf011575y
30 https://doi.org/10.1021/jf052889e
31 https://doi.org/10.1021/jf9702860
32 https://doi.org/10.1080/00401706.1969.10490666
33 https://doi.org/10.1080/01431161.2012.713142
34 https://doi.org/10.1080/02571862.2004.10635014
35 https://doi.org/10.1080/03670240903308604
36 https://doi.org/10.1080/10408390802565889
37 https://doi.org/10.1080/87559120903153524
38 https://doi.org/10.1081/asr-100100840
39 https://doi.org/10.1111/j.1365-2621.2005.tb11496.x
40 https://doi.org/10.17660/actahortic.2009.820.12
41 https://doi.org/10.17660/actahortic.2013.992.14
42 https://doi.org/10.21273/hortsci.28.10.992
43 schema:datePublished 2019-03
44 schema:datePublishedReg 2019-03-01
45 schema:description Mango fruits contain substantial vitamins and dietary fibre. Vitamins vary among and within fruits depending on cultivar type and ripening stage. Conventional techniques of vitamins analysis are based on High Pressure Liquid Chromatography, which are costly and laborious. This study evaluated the potential of Fourier transform infrared-diffuse reflectance spectroscopy (FTIR-DRIFTS) technique in predicting β-carotene, α-tocopherol and l-ascorbic acid in pulps of four mango cultivar types (‘Apple’, ‘Kent’, ‘Ngowe’, and ‘Tommy Atkins’). Combination of ran dom forest (RF) and first derivative spectra developed the predictive models. Factorial ANOVA examined the interaction effect of cultivar type, site (‘Thika’, ‘Embu’ and ‘Machakos), and fruit canopy position (sun exposed/within crown) on β-carotene, α-tocopherol and l-ascorbic acid contents. RF Models gave R2 = 0.97, RMSE = 2.27, RPD = 0.72 for β-carotene; R2 = 0.98, RMSE = 0.26, RPD = 0.30 for α-tocopherol and R2 = 0.96, RMSE = 0.51, RPD = 1.96 for l-ascorbic acid. Generally cultivar type affected vitamin C, F (3, 282) = 7.812, p < 0.05. Apple and Tommy Atkins had higher mean vitamins than Ngowe and Kent. In Machakos, within canopy fruits had higher β-carotene than sun-exposed fruits, F (5, 257) = 2.328, p = 0.043. However, interactions between fruit position, site and cultivar did not affect α-tocopherol and vitamin C. In Thika, Tommy Atkins at fully ripe stage had higher vitamin C than at intermediate maturity stage, F (2, 143) = 7.328, p = 0.01. These results show that FTIR-DRIFTS spectroscopy is a high-throughput method that can be used to predict mango fruit vitamins of in a large data set.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N611fb9c2b3564a81a6850286e11ac027
50 Nd456c5f911824019b0544b9e2cbf69f6
51 sg:journal.1336318
52 schema:name FTIR-DRIFTS-based prediction of β-carotene, α-tocopherol and l-ascorbic acid in mango (Mangifera indica L.) fruit pulp
53 schema:pagination 279
54 schema:productId N33002a35dc264e808d409d03ccc7c420
55 Na0cbbf3a991246859caab1b15d49b5b7
56 Nbda8090ec37b42ad8dcb7684d6ae9c06
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112460801
58 https://doi.org/10.1007/s42452-019-0297-7
59 schema:sdDatePublished 2019-04-11T10:28
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N1adaf394f9c448ca91265a49b5dd9e09
62 schema:url https://link.springer.com/10.1007%2Fs42452-019-0297-7
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N18a67ef56f9e44c4868eb7e84f73b42d rdf:first Na6779596bb054043869c48568e0411a0
67 rdf:rest Nc6bbb7d8fdf44c9e8e4aaea3f3b18675
68 N1adaf394f9c448ca91265a49b5dd9e09 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N1f080d2a9b91441e81f9d2a07b3acdb8 schema:affiliation https://www.grid.ac/institutes/grid.435643.3
71 schema:familyName Shepherd
72 schema:givenName Keith
73 rdf:type schema:Person
74 N33002a35dc264e808d409d03ccc7c420 schema:name doi
75 schema:value 10.1007/s42452-019-0297-7
76 rdf:type schema:PropertyValue
77 N611fb9c2b3564a81a6850286e11ac027 schema:volumeNumber 1
78 rdf:type schema:PublicationVolume
79 N722a544b08574261a5e51fe96c021f86 schema:affiliation https://www.grid.ac/institutes/grid.435643.3
80 schema:familyName Olale
81 schema:givenName Kennedy
82 rdf:type schema:Person
83 N72432e27b2774ba4889434b927d7cb1b rdf:first N1f080d2a9b91441e81f9d2a07b3acdb8
84 rdf:rest rdf:nil
85 Na0cbbf3a991246859caab1b15d49b5b7 schema:name dimensions_id
86 schema:value pub.1112460801
87 rdf:type schema:PropertyValue
88 Na6779596bb054043869c48568e0411a0 schema:affiliation https://www.grid.ac/institutes/grid.411943.a
89 schema:familyName Mohammed
90 schema:givenName Salim Ali
91 rdf:type schema:Person
92 Nadbdee91cc0442dcae3be6d036490795 schema:affiliation https://www.grid.ac/institutes/grid.411943.a
93 schema:familyName Walyambillah
94 schema:givenName Waudo
95 rdf:type schema:Person
96 Nbda8090ec37b42ad8dcb7684d6ae9c06 schema:name readcube_id
97 schema:value 6f919007664f78a0c6e8daeca7263324b9ea86c9a8f77042f1815d34f738e79a
98 rdf:type schema:PropertyValue
99 Nc6bbb7d8fdf44c9e8e4aaea3f3b18675 rdf:first Nf15a3f14cf814ac3a43aa1bad8c82946
100 rdf:rest N72432e27b2774ba4889434b927d7cb1b
101 Nd456c5f911824019b0544b9e2cbf69f6 schema:issueNumber 3
102 rdf:type schema:PublicationIssue
103 Nddba307efc394385abcbb5a15095ec09 rdf:first N722a544b08574261a5e51fe96c021f86
104 rdf:rest Nf3000218e7a7464190efcbbfe3c6d538
105 Nf15a3f14cf814ac3a43aa1bad8c82946 schema:affiliation https://www.grid.ac/institutes/grid.435643.3
106 schema:familyName Sila
107 schema:givenName Andrew
108 rdf:type schema:Person
109 Nf3000218e7a7464190efcbbfe3c6d538 rdf:first Nadbdee91cc0442dcae3be6d036490795
110 rdf:rest N18a67ef56f9e44c4868eb7e84f73b42d
111 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
112 schema:name Medical and Health Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
115 schema:name Clinical Sciences
116 rdf:type schema:DefinedTerm
117 sg:journal.1336318 schema:issn 2523-3963
118 2523-3971
119 schema:name SN Applied Sciences
120 rdf:type schema:Periodical
121 sg:pub.10.1007/978-1-4614-6390-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040782147
122 https://doi.org/10.1007/978-1-4614-6390-0
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02522884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045121881
125 https://doi.org/10.1007/bf02522884
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11104-010-0425-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016888104
128 https://doi.org/10.1007/s11104-010-0425-z
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
131 https://doi.org/10.1023/a:1010933404324
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/sj.ejcn.1601059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013743975
134 https://doi.org/10.1038/sj.ejcn.1601059
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1471-2105-7-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004156594
137 https://doi.org/10.1186/1471-2105-7-3
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/s40543-017-0130-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092648103
140 https://doi.org/10.1186/s40543-017-0130-0
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/(sici)1097-0010(199709)75:1<1::aid-jsfa842>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1039091940
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/jsfa.849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039294944
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1006/abbi.2000.2172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038473028
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0308-8146(88)90115-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006526673
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0889-1575(90)90018-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021217716
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.foodchem.2005.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001667454
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.foodchem.2006.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039162628
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jfca.2003.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036413850
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jfca.2008.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042862989
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.postharvbio.2008.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023130383
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.postharvbio.2008.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017999086
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.scienta.2009.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686347
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0031-9422(02)00710-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025087492
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0308-8146(97)00196-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028944174
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0924-2031(98)00046-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027613320
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0963-9969(01)00092-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028404162
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s1881-8366(12)80012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052650405
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/ar030069m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055149727
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/jf011575y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055899532
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/jf052889e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055904626
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/jf9702860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055929484
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/00401706.1969.10490666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284032
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/01431161.2012.713142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014022176
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/02571862.2004.10635014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006852032
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1080/03670240903308604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026276044
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/10408390802565889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040708154
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/87559120903153524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033642853
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1081/asr-100100840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038915750
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/j.1365-2621.2005.tb11496.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000124288
199 rdf:type schema:CreativeWork
200 https://doi.org/10.17660/actahortic.2009.820.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068419116
201 rdf:type schema:CreativeWork
202 https://doi.org/10.17660/actahortic.2013.992.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068430808
203 rdf:type schema:CreativeWork
204 https://doi.org/10.21273/hortsci.28.10.992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111883911
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.411943.a schema:alternateName Jomo Kenyatta University of Agriculture and Technology
207 schema:name Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.435643.3 schema:alternateName World Agroforestry Centre
210 schema:name Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
211 Department of Chemistry, School of Pure and Applied Sciences, Kisii University, P.O. Box 408, 40200, Kisii, Kenya
212 World Agroforestry Centre (ICRAF), P.O. Box 30677, 00100, Nairobi, Kenya
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...