Synthesis of Microcrystalline LiNaCaLa(MoO4)3:Yb3+/Ho3+ Upconversion Phosphors and Effect of Li+ on Their Spectroscopic Properties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Chang Sung Lim

ABSTRACT

Microwave sol–gel (MSG) based yellow phosphors of LiNaCaLa(MoO4)3 quadruple molybdate with variations of LixNa1−x (x = 0.05, 0.1, 0.2, 0.3, 0.4) under the constant doping amount of Yb3+ = 0.45, Ho3+ = 0.05 were successfully fabricated, and the effect of Li+ of their spectroscopic characteristics were investigated. Under excitation derived from 980 nm, the final particles led to the formation of yellow emissions, which were resulted from the transitions of Ho3+ from the 5S2/5F4 → 5I8 in the green emission area, as well as from the 5F5 → 5I8 in the red emission area. The incorporation of Li+ ions led to the local symmetry distortion around the cations in the substituted crystal structure by the Yb3+ and Ho3+ ions, and further increased the UC transition probabilities in the quadruple molybdate of LixNa1−xCaLa0.5(MoO4)3:Yb0.453+/Ho0.053+. The optimal condition was resulted from the composition of Li0.3Na0.7CaLa0.5(MoO4)3:Yb0.453+/Ho0.053+ for the yellow emitting diode based on the UC emissions and the chromaticity coordinates of CIE. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s42341-018-0083-z

DOI

http://dx.doi.org/10.1007/s42341-018-0083-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110260904


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hanseo University", 
          "id": "https://www.grid.ac/institutes/grid.411977.d", 
          "name": [
            "Department of Aerospace Advanced Materials and Chemical Engineering, Hanseo University, 356-706, Seosan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Chang Sung", 
        "id": "sg:person.011270466123.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270466123.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jallcom.2007.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002525339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlumin.2013.04.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003750952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2006.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004578060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inoche.2011.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009386244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2012.04.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013452956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optmat.2005.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5cp03054d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013704395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2005.12.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013996166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2014.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015434277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2013.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016574485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nano.2011.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016860781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2011.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017626549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2010.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017767834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2016.06.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019183796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2014.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019804302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2015.11.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019894222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2012.08.095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023330560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2012.09.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024639396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2015.06.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024642852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.02.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025222898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2011.10.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027278675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6dt02378a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029411322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2012.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029586757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2014.04.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030077577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2012.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030849853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2013.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033350733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpcs.2008.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033796548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2013.07.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033918778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1nr11365h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034631295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optmat.2013.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038044862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2012.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039117232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2012.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041948185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2004.11.257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042617725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optmat.2010.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043310671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2012.03.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045402877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2010.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047682477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2008.07.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051667261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm402729r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055415650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic5015412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055575725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp048072q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056058493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp048072q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056058493"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Microwave sol\u2013gel (MSG) based yellow phosphors of LiNaCaLa(MoO4)3 quadruple molybdate with variations of LixNa1\u2212x (x = 0.05, 0.1, 0.2, 0.3, 0.4) under the constant doping amount of Yb3+ = 0.45, Ho3+ = 0.05 were successfully fabricated, and the effect of Li+ of their spectroscopic characteristics were investigated. Under excitation derived from 980 nm, the final particles led to the formation of yellow emissions, which were resulted from the transitions of Ho3+ from the 5S2/5F4 \u2192 5I8 in the green emission area, as well as from the 5F5 \u2192 5I8 in the red emission area. The incorporation of Li+ ions led to the local symmetry distortion around the cations in the substituted crystal structure by the Yb3+ and Ho3+ ions, and further increased the UC transition probabilities in the quadruple molybdate of LixNa1\u2212xCaLa0.5(MoO4)3:Yb0.453+/Ho0.053+. The optimal condition was resulted from the composition of Li0.3Na0.7CaLa0.5(MoO4)3:Yb0.453+/Ho0.053+ for the yellow emitting diode based on the UC emissions and the chromaticity coordinates of CIE.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s42341-018-0083-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1139550", 
        "issn": [
          "1229-7607", 
          "2092-7592"
        ], 
        "name": "Transactions on Electrical and Electronic Materials", 
        "type": "Periodical"
      }
    ], 
    "name": "Synthesis of Microcrystalline LiNaCaLa(MoO4)3:Yb3+/Ho3+ Upconversion Phosphors and Effect of Li+ on Their Spectroscopic Properties", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a5243853623a60fb805d341c4629354dc3f00acf54cc3a7c750c11159d54e4df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s42341-018-0083-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110260904"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s42341-018-0083-z", 
      "https://app.dimensions.ai/details/publication/pub.1110260904"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79627_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs42341-018-0083-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42341-018-0083-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42341-018-0083-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42341-018-0083-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42341-018-0083-z'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      65 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s42341-018-0083-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N2f8f1288c94d4294ac203688ede9336c
4 schema:citation https://doi.org/10.1016/j.aca.2014.04.030
5 https://doi.org/10.1016/j.biotechadv.2012.04.009
6 https://doi.org/10.1016/j.cap.2012.02.048
7 https://doi.org/10.1016/j.ceramint.2012.04.084
8 https://doi.org/10.1016/j.ceramint.2015.06.052
9 https://doi.org/10.1016/j.infrared.2014.08.018
10 https://doi.org/10.1016/j.inoche.2011.07.015
11 https://doi.org/10.1016/j.jallcom.2007.04.010
12 https://doi.org/10.1016/j.jallcom.2011.10.008
13 https://doi.org/10.1016/j.jallcom.2012.09.125
14 https://doi.org/10.1016/j.jallcom.2014.04.134
15 https://doi.org/10.1016/j.jallcom.2015.02.106
16 https://doi.org/10.1016/j.jallcom.2016.06.134
17 https://doi.org/10.1016/j.jcrysgro.2004.11.257
18 https://doi.org/10.1016/j.jcrysgro.2006.02.005
19 https://doi.org/10.1016/j.jlumin.2013.04.031
20 https://doi.org/10.1016/j.jpcs.2008.01.015
21 https://doi.org/10.1016/j.jssc.2005.12.041
22 https://doi.org/10.1016/j.jssc.2012.03.003
23 https://doi.org/10.1016/j.jssc.2013.06.020
24 https://doi.org/10.1016/j.matchemphys.2011.10.039
25 https://doi.org/10.1016/j.materresbull.2010.04.004
26 https://doi.org/10.1016/j.materresbull.2010.05.027
27 https://doi.org/10.1016/j.materresbull.2012.09.029
28 https://doi.org/10.1016/j.materresbull.2015.11.058
29 https://doi.org/10.1016/j.nano.2011.02.013
30 https://doi.org/10.1016/j.optcom.2008.07.041
31 https://doi.org/10.1016/j.optcom.2012.08.095
32 https://doi.org/10.1016/j.optlastec.2013.06.016
33 https://doi.org/10.1016/j.optmat.2005.09.004
34 https://doi.org/10.1016/j.optmat.2010.12.015
35 https://doi.org/10.1016/j.optmat.2013.03.008
36 https://doi.org/10.1016/j.physb.2012.03.066
37 https://doi.org/10.1016/j.snb.2013.07.094
38 https://doi.org/10.1021/cm402729r
39 https://doi.org/10.1021/ic5015412
40 https://doi.org/10.1021/jp048072q
41 https://doi.org/10.1039/c1nr11365h
42 https://doi.org/10.1039/c5cp03054d
43 https://doi.org/10.1039/c6dt02378a
44 schema:datePublished 2019-02
45 schema:datePublishedReg 2019-02-01
46 schema:description Microwave sol–gel (MSG) based yellow phosphors of LiNaCaLa(MoO4)3 quadruple molybdate with variations of LixNa1−x (x = 0.05, 0.1, 0.2, 0.3, 0.4) under the constant doping amount of Yb3+ = 0.45, Ho3+ = 0.05 were successfully fabricated, and the effect of Li+ of their spectroscopic characteristics were investigated. Under excitation derived from 980 nm, the final particles led to the formation of yellow emissions, which were resulted from the transitions of Ho3+ from the 5S2/5F4 → 5I8 in the green emission area, as well as from the 5F5 → 5I8 in the red emission area. The incorporation of Li+ ions led to the local symmetry distortion around the cations in the substituted crystal structure by the Yb3+ and Ho3+ ions, and further increased the UC transition probabilities in the quadruple molybdate of LixNa1−xCaLa0.5(MoO4)3:Yb0.453+/Ho0.053+. The optimal condition was resulted from the composition of Li0.3Na0.7CaLa0.5(MoO4)3:Yb0.453+/Ho0.053+ for the yellow emitting diode based on the UC emissions and the chromaticity coordinates of CIE.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1139550
51 schema:name Synthesis of Microcrystalline LiNaCaLa(MoO4)3:Yb3+/Ho3+ Upconversion Phosphors and Effect of Li+ on Their Spectroscopic Properties
52 schema:pagination 1-7
53 schema:productId N9a8b39066adc4d429ed8d6a22f779dfa
54 Ndadefb625628452880c9662022c3f75b
55 Ne6ad259a30444b2eafaa8d2ef58a5017
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110260904
57 https://doi.org/10.1007/s42341-018-0083-z
58 schema:sdDatePublished 2019-04-11T08:16
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nca0f514dc7424127a86f9c31d5ce1d5d
61 schema:url https://link.springer.com/10.1007%2Fs42341-018-0083-z
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N2f8f1288c94d4294ac203688ede9336c rdf:first sg:person.011270466123.07
66 rdf:rest rdf:nil
67 N9a8b39066adc4d429ed8d6a22f779dfa schema:name readcube_id
68 schema:value a5243853623a60fb805d341c4629354dc3f00acf54cc3a7c750c11159d54e4df
69 rdf:type schema:PropertyValue
70 Nca0f514dc7424127a86f9c31d5ce1d5d schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Ndadefb625628452880c9662022c3f75b schema:name doi
73 schema:value 10.1007/s42341-018-0083-z
74 rdf:type schema:PropertyValue
75 Ne6ad259a30444b2eafaa8d2ef58a5017 schema:name dimensions_id
76 schema:value pub.1110260904
77 rdf:type schema:PropertyValue
78 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
79 schema:name Chemical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Chemistry (incl. Structural)
83 rdf:type schema:DefinedTerm
84 sg:journal.1139550 schema:issn 1229-7607
85 2092-7592
86 schema:name Transactions on Electrical and Electronic Materials
87 rdf:type schema:Periodical
88 sg:person.011270466123.07 schema:affiliation https://www.grid.ac/institutes/grid.411977.d
89 schema:familyName Lim
90 schema:givenName Chang Sung
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270466123.07
92 rdf:type schema:Person
93 https://doi.org/10.1016/j.aca.2014.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015434277
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.biotechadv.2012.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029586757
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.cap.2012.02.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041948185
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.ceramint.2012.04.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013452956
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.ceramint.2015.06.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024642852
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.infrared.2014.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019804302
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.inoche.2011.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009386244
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.jallcom.2007.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002525339
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.jallcom.2011.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017626549
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jallcom.2012.09.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024639396
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jallcom.2014.04.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030077577
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jallcom.2015.02.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025222898
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jallcom.2016.06.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019183796
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jcrysgro.2004.11.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042617725
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jcrysgro.2006.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004578060
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jlumin.2013.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003750952
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jpcs.2008.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033796548
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jssc.2005.12.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013996166
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jssc.2012.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039117232
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jssc.2013.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033350733
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.matchemphys.2011.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027278675
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.materresbull.2010.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047682477
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.materresbull.2010.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017767834
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.materresbull.2012.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030849853
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.materresbull.2015.11.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019894222
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.nano.2011.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016860781
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.optcom.2008.07.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051667261
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.optcom.2012.08.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023330560
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.optlastec.2013.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016574485
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.optmat.2005.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618695
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.optmat.2010.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043310671
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.optmat.2013.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038044862
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.physb.2012.03.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045402877
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.snb.2013.07.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033918778
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/cm402729r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055415650
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/ic5015412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055575725
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/jp048072q schema:sameAs https://app.dimensions.ai/details/publication/pub.1056058493
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1039/c1nr11365h schema:sameAs https://app.dimensions.ai/details/publication/pub.1034631295
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1039/c5cp03054d schema:sameAs https://app.dimensions.ai/details/publication/pub.1013704395
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1039/c6dt02378a schema:sameAs https://app.dimensions.ai/details/publication/pub.1029411322
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.411977.d schema:alternateName Hanseo University
174 schema:name Department of Aerospace Advanced Materials and Chemical Engineering, Hanseo University, 356-706, Seosan, Korea
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...