Modeling assessment of recovering iron from red mud by direct reduction: magnetic separation based on response surface methodology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Ran Wang, Zheng-gen Liu, Man-sheng Chu, Hong-tao Wang, Wei Zhao, Li-hua Gao

ABSTRACT

Red mud, the waste generated during alumina production, contains iron and other valuable metals. To recover the iron efficiently from red mud, a three-factor five-level central composite design in response surface methodology was used to study the effects of process parameters, such as FC/O (the molar ratio of fixed carbon in coal to reducible oxygen of iron oxide in red mud), reduction temperature, reduction time, and their interaction on the iron recovery rate and total iron content in magnetic product obtained from the process of direct reduction–magnetic separation. The relevant assessment model was established. The model could predict the changing rules of iron recovery rate and total iron content in the magnetic product affected by the process parameters. The results show that the iron recovery rate is significantly influenced by three factors and reduction temperature plays the most important role. The iron recovery rate and total iron content in magnetic product could be up to 98.37 and 82.52%, respectively, under the numerically optimal process parameters condition of reduction temperature of 1400 °C, FC/O of 0.80 and reduction time of 100 min obtained by the assessment model. The predicted values are in good agreement with the experimental values. More... »

PAGES

497-505

References to SciGraph publications

  • 2012-08. Recovery of Iron From High-Iron Red Mud by Reduction Roasting With Adding Sodium Salt in JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • 2014-03. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting in INTERNATIONAL JOURNAL OF MINERALS, METALLURGY, AND MATERIALS
  • 2015-08. Orthogonal experiments on direct reduction of carbon-bearing pellets of Bayer Red Mud in JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • 2013-05. Nuggets Production by Direct Reduction of High Iron Red Mud in JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s42243-018-0063-x

    DOI

    http://dx.doi.org/10.1007/s42243-018-0063-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104144969


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China", 
                "Northeastern Institute of Metal Materials Co., Ltd, 110108, Shenyang, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Ran", 
            "id": "sg:person.016220072700.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016220072700.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zheng-gen", 
            "id": "sg:person.015634642173.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634642173.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chu", 
            "givenName": "Man-sheng", 
            "id": "sg:person.012666335331.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666335331.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Hong-tao", 
            "id": "sg:person.012146600473.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146600473.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Wei", 
            "id": "sg:person.014653707166.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014653707166.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Li-hua", 
            "id": "sg:person.012077354332.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077354332.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.talanta.2014.01.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000866004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2008.03.122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003872704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.wasman.2014.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006113056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/srin.201300399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009458083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.powtec.2015.01.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010999657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.powtec.2014.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012099326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1006-706x(15)30058-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012908279", 
              "https://doi.org/10.1016/s1006-706x(15)30058-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1006-706x(12)60131-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016879653", 
              "https://doi.org/10.1016/s1006-706x(12)60131-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0955-2219(99)00156-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018395337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/srin.201300072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019018852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodchem.2015.07.070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021175831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2014.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022911208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.powtec.2007.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023777973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12613-014-0889-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023944030", 
              "https://doi.org/10.1007/s12613-014-0889-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2008.05.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025610204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.talanta.2008.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026215259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(08)60447-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033957382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodchem.2015.06.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038233238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/srin.201100044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042564502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tca.2014.04.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043945643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1006-706x(13)60092-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046696098", 
              "https://doi.org/10.1016/s1006-706x(13)60092-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2004.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048368542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0008-8846(97)00162-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048652942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physc.2010.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049547756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2013.03.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049659215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2355/tetsutohagane1955.89.12_1212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085095042"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-05", 
        "datePublishedReg": "2018-05-01", 
        "description": "Red mud, the waste generated during alumina production, contains iron and other valuable metals. To recover the iron efficiently from red mud, a three-factor five-level central composite design in response surface methodology was used to study the effects of process parameters, such as FC/O (the molar ratio of fixed carbon in coal to reducible oxygen of iron oxide in red mud), reduction temperature, reduction time, and their interaction on the iron recovery rate and total iron content in magnetic product obtained from the process of direct reduction\u2013magnetic separation. The relevant assessment model was established. The model could predict the changing rules of iron recovery rate and total iron content in the magnetic product affected by the process parameters. The results show that the iron recovery rate is significantly influenced by three factors and reduction temperature plays the most important role. The iron recovery rate and total iron content in magnetic product could be up to 98.37 and 82.52%, respectively, under the numerically optimal process parameters condition of reduction temperature of 1400 \u00b0C, FC/O of 0.80 and reduction time of 100 min obtained by the assessment model. The predicted values are in good agreement with the experimental values.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s42243-018-0063-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1037242", 
            "issn": [
              "1001-0963", 
              "2210-3988"
            ], 
            "name": "Journal of Iron and Steel Research International", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Modeling assessment of recovering iron from red mud by direct reduction: magnetic separation based on response surface methodology", 
        "pagination": "497-505", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "69e9ab749082ea60d121a64320ae846db41753075d508e901f29abc7fe6fc30d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s42243-018-0063-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104144969"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s42243-018-0063-x", 
          "https://app.dimensions.ai/details/publication/pub.1104144969"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89785_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs42243-018-0063-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42243-018-0063-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42243-018-0063-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42243-018-0063-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42243-018-0063-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s42243-018-0063-x schema:about anzsrc-for:09
    2 anzsrc-for:0914
    3 schema:author Nbb29beb4c7404ccba043308dea28fe09
    4 schema:citation sg:pub.10.1007/s12613-014-0889-6
    5 sg:pub.10.1016/s1006-706x(12)60131-9
    6 sg:pub.10.1016/s1006-706x(13)60092-8
    7 sg:pub.10.1016/s1006-706x(15)30058-3
    8 https://doi.org/10.1002/srin.201100044
    9 https://doi.org/10.1002/srin.201300072
    10 https://doi.org/10.1002/srin.201300399
    11 https://doi.org/10.1016/j.chemosphere.2008.05.013
    12 https://doi.org/10.1016/j.foodchem.2015.06.036
    13 https://doi.org/10.1016/j.foodchem.2015.07.070
    14 https://doi.org/10.1016/j.jhazmat.2004.08.002
    15 https://doi.org/10.1016/j.jhazmat.2008.03.122
    16 https://doi.org/10.1016/j.jhazmat.2013.03.059
    17 https://doi.org/10.1016/j.jhazmat.2014.09.005
    18 https://doi.org/10.1016/j.physc.2010.12.003
    19 https://doi.org/10.1016/j.powtec.2007.10.002
    20 https://doi.org/10.1016/j.powtec.2014.06.006
    21 https://doi.org/10.1016/j.powtec.2015.01.068
    22 https://doi.org/10.1016/j.talanta.2008.05.019
    23 https://doi.org/10.1016/j.talanta.2014.01.034
    24 https://doi.org/10.1016/j.tca.2014.04.027
    25 https://doi.org/10.1016/j.wasman.2014.09.003
    26 https://doi.org/10.1016/s0008-8846(97)00162-2
    27 https://doi.org/10.1016/s0955-2219(99)00156-9
    28 https://doi.org/10.1016/s1003-6326(08)60447-1
    29 https://doi.org/10.2355/tetsutohagane1955.89.12_1212
    30 schema:datePublished 2018-05
    31 schema:datePublishedReg 2018-05-01
    32 schema:description Red mud, the waste generated during alumina production, contains iron and other valuable metals. To recover the iron efficiently from red mud, a three-factor five-level central composite design in response surface methodology was used to study the effects of process parameters, such as FC/O (the molar ratio of fixed carbon in coal to reducible oxygen of iron oxide in red mud), reduction temperature, reduction time, and their interaction on the iron recovery rate and total iron content in magnetic product obtained from the process of direct reduction–magnetic separation. The relevant assessment model was established. The model could predict the changing rules of iron recovery rate and total iron content in the magnetic product affected by the process parameters. The results show that the iron recovery rate is significantly influenced by three factors and reduction temperature plays the most important role. The iron recovery rate and total iron content in magnetic product could be up to 98.37 and 82.52%, respectively, under the numerically optimal process parameters condition of reduction temperature of 1400 °C, FC/O of 0.80 and reduction time of 100 min obtained by the assessment model. The predicted values are in good agreement with the experimental values.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf Nb4633601c43944e0814c1eeab0c14fc1
    37 Ne97dbba935cb44ad89076604c8435fd3
    38 sg:journal.1037242
    39 schema:name Modeling assessment of recovering iron from red mud by direct reduction: magnetic separation based on response surface methodology
    40 schema:pagination 497-505
    41 schema:productId N5401cbe23984406d9a7e37aa84b2758a
    42 N63637d878c3749819203cfdfc86d2b1b
    43 Ne118eb8b21af49dc9cd68004bdf711ba
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104144969
    45 https://doi.org/10.1007/s42243-018-0063-x
    46 schema:sdDatePublished 2019-04-11T09:49
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Ne6b44d5c6dc14b5db8d8997e40cce1d1
    49 schema:url https://link.springer.com/10.1007%2Fs42243-018-0063-x
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N5401cbe23984406d9a7e37aa84b2758a schema:name dimensions_id
    54 schema:value pub.1104144969
    55 rdf:type schema:PropertyValue
    56 N56a2d0bc1087484dae9abbe71cc4b970 rdf:first sg:person.012666335331.51
    57 rdf:rest N5f3fd5293342404780b8742382f1dad6
    58 N5f3fd5293342404780b8742382f1dad6 rdf:first sg:person.012146600473.48
    59 rdf:rest Ndefdb3f714e64c0e8cdb9d07695822b8
    60 N63637d878c3749819203cfdfc86d2b1b schema:name readcube_id
    61 schema:value 69e9ab749082ea60d121a64320ae846db41753075d508e901f29abc7fe6fc30d
    62 rdf:type schema:PropertyValue
    63 Nb4633601c43944e0814c1eeab0c14fc1 schema:volumeNumber 25
    64 rdf:type schema:PublicationVolume
    65 Nbb29beb4c7404ccba043308dea28fe09 rdf:first sg:person.016220072700.38
    66 rdf:rest Nd8cd9e4ba8e54f32bcfb62c0ed2c3e4a
    67 Nc10826d54d514aa69225d36f5486d91d rdf:first sg:person.012077354332.19
    68 rdf:rest rdf:nil
    69 Nd8cd9e4ba8e54f32bcfb62c0ed2c3e4a rdf:first sg:person.015634642173.52
    70 rdf:rest N56a2d0bc1087484dae9abbe71cc4b970
    71 Ndefdb3f714e64c0e8cdb9d07695822b8 rdf:first sg:person.014653707166.33
    72 rdf:rest Nc10826d54d514aa69225d36f5486d91d
    73 Ne118eb8b21af49dc9cd68004bdf711ba schema:name doi
    74 schema:value 10.1007/s42243-018-0063-x
    75 rdf:type schema:PropertyValue
    76 Ne6b44d5c6dc14b5db8d8997e40cce1d1 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 Ne97dbba935cb44ad89076604c8435fd3 schema:issueNumber 5
    79 rdf:type schema:PublicationIssue
    80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Engineering
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Resources Engineering and Extractive Metallurgy
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1037242 schema:issn 1001-0963
    87 2210-3988
    88 schema:name Journal of Iron and Steel Research International
    89 rdf:type schema:Periodical
    90 sg:person.012077354332.19 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    91 schema:familyName Gao
    92 schema:givenName Li-hua
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077354332.19
    94 rdf:type schema:Person
    95 sg:person.012146600473.48 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    96 schema:familyName Wang
    97 schema:givenName Hong-tao
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146600473.48
    99 rdf:type schema:Person
    100 sg:person.012666335331.51 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    101 schema:familyName Chu
    102 schema:givenName Man-sheng
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666335331.51
    104 rdf:type schema:Person
    105 sg:person.014653707166.33 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    106 schema:familyName Zhao
    107 schema:givenName Wei
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014653707166.33
    109 rdf:type schema:Person
    110 sg:person.015634642173.52 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    111 schema:familyName Liu
    112 schema:givenName Zheng-gen
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634642173.52
    114 rdf:type schema:Person
    115 sg:person.016220072700.38 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
    116 schema:familyName Wang
    117 schema:givenName Ran
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016220072700.38
    119 rdf:type schema:Person
    120 sg:pub.10.1007/s12613-014-0889-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023944030
    121 https://doi.org/10.1007/s12613-014-0889-6
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1016/s1006-706x(12)60131-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016879653
    124 https://doi.org/10.1016/s1006-706x(12)60131-9
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1016/s1006-706x(13)60092-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046696098
    127 https://doi.org/10.1016/s1006-706x(13)60092-8
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1016/s1006-706x(15)30058-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012908279
    130 https://doi.org/10.1016/s1006-706x(15)30058-3
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1002/srin.201100044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042564502
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1002/srin.201300072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019018852
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1002/srin.201300399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009458083
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.chemosphere.2008.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025610204
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.foodchem.2015.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038233238
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.foodchem.2015.07.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021175831
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.jhazmat.2004.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048368542
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.jhazmat.2008.03.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003872704
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.jhazmat.2013.03.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049659215
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.jhazmat.2014.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022911208
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.physc.2010.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049547756
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.powtec.2007.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023777973
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.powtec.2014.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012099326
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.powtec.2015.01.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010999657
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.talanta.2008.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026215259
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.talanta.2014.01.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000866004
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.tca.2014.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043945643
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.wasman.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006113056
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/s0008-8846(97)00162-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048652942
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s0955-2219(99)00156-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018395337
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s1003-6326(08)60447-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033957382
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.2355/tetsutohagane1955.89.12_1212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085095042
    175 rdf:type schema:CreativeWork
    176 https://www.grid.ac/institutes/grid.412252.2 schema:alternateName Northeastern University
    177 schema:name Northeastern Institute of Metal Materials Co., Ltd, 110108, Shenyang, Liaoning, China
    178 School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...