Numerical Simulation of Flow past a Square Cylinder with a Circular Bar Upstream and a Splitter Plate Downstream View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-17

AUTHORS

Yuan Ma, M.M. Rashidi, Zhi-gang Yang

ABSTRACT

numerical investigation of flow past a square cylinder with a circular bar upstream and a splitter plate downstream is carried out in this paper by LBM. The combination of the three obstacles and LBM is the main novelty of the present study. The flow patterns are analyzed by a uniform flow of Reynolds number 100 based on the side length of the square cylinder, D. Numerical simulations are performed in the range of 1 ≤ Ds/D ≤ 5, 0 ≤ G/D ≤ 7 and 1 ≤ L/D ≤ 6, where Ds, G and L are the center-to center distance, surface-to-surface distance and the splitter plate length, respectively. Six flow patterns are observed in the present study. The maximum percentage reduction in mean drag coefficient is 68.76% at (ds, g, l) = (2.5, 0, 3) which is in Pattern VI. The vortex shedding from the square cylinder and the circular bar can be completely suppressed in Pattern VI. The small distance between the square cylinder and the splitter plate plays a more vital role in suppression of vortex shedding as compared to large distance and length. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s42241-018-0087-5

DOI

http://dx.doi.org/10.1007/s42241-018-0087-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106327648


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Shanghai Automotive Wind Tunnel Center, Tongji University, 201804, Shanghai, China", 
            "Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, 201804, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Yuan", 
        "id": "sg:person.014215404470.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215404470.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Department of Civil Engineering, School of Engineering, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rashidi", 
        "givenName": "M.M.", 
        "id": "sg:person.016573246311.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Shanghai Automotive Wind Tunnel Center, Tongji University, 201804, Shanghai, China", 
            "Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, 201804, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhi-gang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00348-005-0936-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003248255", 
          "https://doi.org/10.1007/s00348-005-0936-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-005-0936-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003248255", 
          "https://doi.org/10.1007/s00348-005-0936-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-014-1118-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006489806", 
          "https://doi.org/10.1007/s12206-014-1118-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12205-015-0209-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009314734", 
          "https://doi.org/10.1007/s12205-015-0209-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2015.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013124551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jmech.2012.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013360601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-81-322-2743-4_122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017662826", 
          "https://doi.org/10.1007/978-81-322-2743-4_122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407780490278562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018486779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2015.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020215572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6105(97)00150-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024462286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-6058(11)60212-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027577699", 
          "https://doi.org/10.1016/s1001-6058(11)60212-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.2416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027880706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2012.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029101370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-06260-0_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034912164", 
          "https://doi.org/10.1007/978-3-319-06260-0_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.flowmeasinst.2016.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040384980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfluidstructs.2014.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042040315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-727x(99)00081-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042557960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10494-005-9008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046424976", 
          "https://doi.org/10.1007/s10494-005-9008-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.9460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046998371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.1979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051869869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053766530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053766530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-017-0119-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083910117", 
          "https://doi.org/10.1007/s12206-017-0119-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-017-0119-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083910117", 
          "https://doi.org/10.1007/s12206-017-0119-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3452121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098526483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5022060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101299357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/ajkfluids2015-01793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105910902"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-17", 
    "datePublishedReg": "2018-08-17", 
    "description": "numerical investigation of flow past a square cylinder with a circular bar upstream and a splitter plate downstream is carried out in this paper by LBM. The combination of the three obstacles and LBM is the main novelty of the present study. The flow patterns are analyzed by a uniform flow of Reynolds number 100 based on the side length of the square cylinder, D. Numerical simulations are performed in the range of 1 \u2264 Ds/D \u2264 5, 0 \u2264 G/D \u2264 7 and 1 \u2264 L/D \u2264 6, where Ds, G and L are the center-to center distance, surface-to-surface distance and the splitter plate length, respectively. Six flow patterns are observed in the present study. The maximum percentage reduction in mean drag coefficient is 68.76% at (ds, g, l) = (2.5, 0, 3) which is in Pattern VI. The vortex shedding from the square cylinder and the circular bar can be completely suppressed in Pattern VI. The small distance between the square cylinder and the splitter plate plays a more vital role in suppression of vortex shedding as compared to large distance and length.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s42241-018-0087-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046896", 
        "issn": [
          "1001-6058", 
          "1878-0342"
        ], 
        "name": "Journal of Hydrodynamics", 
        "type": "Periodical"
      }
    ], 
    "name": "Numerical Simulation of Flow past a Square Cylinder with a Circular Bar Upstream and a Splitter Plate Downstream", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "23dc967d5594f12bb7d2525ea3f6677c12da5bed21134892585e68bc3ce423cd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s42241-018-0087-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106327648"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s42241-018-0087-5", 
      "https://app.dimensions.ai/details/publication/pub.1106327648"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s42241-018-0087-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42241-018-0087-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42241-018-0087-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42241-018-0087-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42241-018-0087-5'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      49 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s42241-018-0087-5 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N41858b27f3ab44a1b3b6f22fbc96ecef
4 schema:citation sg:pub.10.1007/978-3-319-06260-0_25
5 sg:pub.10.1007/978-81-322-2743-4_122
6 sg:pub.10.1007/s00348-005-0936-1
7 sg:pub.10.1007/s10494-005-9008-0
8 sg:pub.10.1007/s12205-015-0209-3
9 sg:pub.10.1007/s12206-014-1118-y
10 sg:pub.10.1007/s12206-017-0119-z
11 sg:pub.10.1016/s1001-6058(11)60212-6
12 https://doi.org/10.1002/fld.1979
13 https://doi.org/10.1002/fld.2416
14 https://doi.org/10.1016/j.expthermflusci.2015.09.009
15 https://doi.org/10.1016/j.flowmeasinst.2016.06.024
16 https://doi.org/10.1016/j.ijheatfluidflow.2012.03.011
17 https://doi.org/10.1016/j.jfluidstructs.2014.03.006
18 https://doi.org/10.1016/j.oceaneng.2015.08.041
19 https://doi.org/10.1016/s0142-727x(99)00081-8
20 https://doi.org/10.1016/s0167-6105(97)00150-5
21 https://doi.org/10.1017/jfm.2014.430
22 https://doi.org/10.1017/jmech.2012.31
23 https://doi.org/10.1063/1.3452121
24 https://doi.org/10.1063/1.5022060
25 https://doi.org/10.1080/10407780490278562
26 https://doi.org/10.1103/physreve.65.041203
27 https://doi.org/10.1115/ajkfluids2015-01793
28 https://doi.org/10.2514/1.9460
29 schema:datePublished 2018-08-17
30 schema:datePublishedReg 2018-08-17
31 schema:description numerical investigation of flow past a square cylinder with a circular bar upstream and a splitter plate downstream is carried out in this paper by LBM. The combination of the three obstacles and LBM is the main novelty of the present study. The flow patterns are analyzed by a uniform flow of Reynolds number 100 based on the side length of the square cylinder, D. Numerical simulations are performed in the range of 1 ≤ Ds/D ≤ 5, 0 ≤ G/D ≤ 7 and 1 ≤ L/D ≤ 6, where Ds, G and L are the center-to center distance, surface-to-surface distance and the splitter plate length, respectively. Six flow patterns are observed in the present study. The maximum percentage reduction in mean drag coefficient is 68.76% at (ds, g, l) = (2.5, 0, 3) which is in Pattern VI. The vortex shedding from the square cylinder and the circular bar can be completely suppressed in Pattern VI. The small distance between the square cylinder and the splitter plate plays a more vital role in suppression of vortex shedding as compared to large distance and length.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf sg:journal.1046896
36 schema:name Numerical Simulation of Flow past a Square Cylinder with a Circular Bar Upstream and a Splitter Plate Downstream
37 schema:pagination 1-16
38 schema:productId N5a82cae16cb243f08eb961a9948d1f46
39 Nad6b1400d3314cdcbfcffa4672853608
40 Nbbc45244312b4ae09764bb1c38e2ee9d
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106327648
42 https://doi.org/10.1007/s42241-018-0087-5
43 schema:sdDatePublished 2019-04-10T23:20
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N008c0d4c53614421acdf852eb69e2df1
46 schema:url http://link.springer.com/10.1007/s42241-018-0087-5
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N008c0d4c53614421acdf852eb69e2df1 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N011abea3867f471e8fd100e603a95019 rdf:first Nd37bca0f25b0428d900fa3c27ba2d279
53 rdf:rest rdf:nil
54 N41858b27f3ab44a1b3b6f22fbc96ecef rdf:first sg:person.014215404470.00
55 rdf:rest Ne21784fade34455f8f2a3e48aef6f7bc
56 N5a82cae16cb243f08eb961a9948d1f46 schema:name readcube_id
57 schema:value 23dc967d5594f12bb7d2525ea3f6677c12da5bed21134892585e68bc3ce423cd
58 rdf:type schema:PropertyValue
59 Nad6b1400d3314cdcbfcffa4672853608 schema:name dimensions_id
60 schema:value pub.1106327648
61 rdf:type schema:PropertyValue
62 Nbbc45244312b4ae09764bb1c38e2ee9d schema:name doi
63 schema:value 10.1007/s42241-018-0087-5
64 rdf:type schema:PropertyValue
65 Nd37bca0f25b0428d900fa3c27ba2d279 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
66 schema:familyName Yang
67 schema:givenName Zhi-gang
68 rdf:type schema:Person
69 Ne21784fade34455f8f2a3e48aef6f7bc rdf:first sg:person.016573246311.03
70 rdf:rest N011abea3867f471e8fd100e603a95019
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
75 schema:name Interdisciplinary Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1046896 schema:issn 1001-6058
78 1878-0342
79 schema:name Journal of Hydrodynamics
80 rdf:type schema:Periodical
81 sg:person.014215404470.00 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
82 schema:familyName Ma
83 schema:givenName Yuan
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215404470.00
85 rdf:type schema:Person
86 sg:person.016573246311.03 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
87 schema:familyName Rashidi
88 schema:givenName M.M.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03
90 rdf:type schema:Person
91 sg:pub.10.1007/978-3-319-06260-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034912164
92 https://doi.org/10.1007/978-3-319-06260-0_25
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-81-322-2743-4_122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017662826
95 https://doi.org/10.1007/978-81-322-2743-4_122
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s00348-005-0936-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003248255
98 https://doi.org/10.1007/s00348-005-0936-1
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10494-005-9008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046424976
101 https://doi.org/10.1007/s10494-005-9008-0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s12205-015-0209-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009314734
104 https://doi.org/10.1007/s12205-015-0209-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s12206-014-1118-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006489806
107 https://doi.org/10.1007/s12206-014-1118-y
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s12206-017-0119-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1083910117
110 https://doi.org/10.1007/s12206-017-0119-z
111 rdf:type schema:CreativeWork
112 sg:pub.10.1016/s1001-6058(11)60212-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027577699
113 https://doi.org/10.1016/s1001-6058(11)60212-6
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/fld.1979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051869869
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/fld.2416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027880706
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.expthermflusci.2015.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020215572
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.flowmeasinst.2016.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040384980
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ijheatfluidflow.2012.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029101370
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jfluidstructs.2014.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042040315
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.oceaneng.2015.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013124551
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0142-727x(99)00081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042557960
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0167-6105(97)00150-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024462286
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1017/jfm.2014.430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053766530
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1017/jmech.2012.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013360601
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.3452121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098526483
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.5022060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101299357
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/10407780490278562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018486779
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreve.65.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728219
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1115/ajkfluids2015-01793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105910902
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2514/1.9460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046998371
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
150 schema:name Shanghai Automotive Wind Tunnel Center, Tongji University, 201804, Shanghai, China
151 Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, 201804, Shanghai, China
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
154 schema:name Department of Civil Engineering, School of Engineering, University of Birmingham, B15 2TT, Birmingham, UK
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...