Comparison of Data Mining and GDD-Based Models in Discrimination of Maize Phenology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Mahdi Ghamghami, Nozar Ghahreman, Parviz Irannejad, Khalil Ghorbani

ABSTRACT

Data mining approaches are designed for classification problems in which each observation is a member of one and only one class. In this study, a non-deterministic approach based on C5.0 data mining algorithm has been employed for discriminating the phenological stages of maize from emergence to dough, in a field located in Karaj, Iran. Two readily-available predictors i.e. accumulated growing degree days (AGDD) and multi-temporal LANDSAT7-extracted normalized difference vegetation index (NDVI) was used to build the decision tree. The AGDD was calculated based on three cardinal thresholds of temperature i.e. effective minimum, optimum, effective maximum. The NDVI was compared with two recently developed indices namely, enhanced vegetation index2 (EVI2) and optimized soil adjusted vegetation index (OSAVI) using the signal to noise ratio (SNR) criterion. Findings confirmed that these three remotely sensed indices do not have significant differences, therefore, the smoothed time series of NDVI was used in the C5.0 algorithm. The precisions of classification by C5.0 data mining algorithm in partitioning of training and testing data were approximately 90.51 and 81.77%, respectively. The mean absolute error (MAE) values of the onset of maize phenological stages were estimated about 2.6–5.3 days for various stages by C5.0 model. While corresponding values for the classical AGDD model were 3.9–10.7 days. This confirms the skill of data mining approach in comparison with commonly-used the classical AGDD model in applications of real time monitoring. More... »

PAGES

1-12

References to SciGraph publications

  • 2013. Applied Predictive Modeling in NONE
  • 1998. Decision support system for agrotechnology transfer: DSSAT v3 in UNDERSTANDING OPTIONS FOR AGRICULTURAL PRODUCTION
  • 2009-09-14. Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology in PHENOLOGICAL RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s42106-018-0030-2

    DOI

    http://dx.doi.org/10.1007/s42106-018-0030-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109816211


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Tehran", 
              "id": "https://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "Department of Irrigation and Reclamation Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghamghami", 
            "givenName": "Mahdi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tehran", 
              "id": "https://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "Department of Irrigation and Reclamation Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghahreman", 
            "givenName": "Nozar", 
            "id": "sg:person.013134550757.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013134550757.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tehran", 
              "id": "https://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "Geophysics Institute, University of Tehran, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Irannejad", 
            "givenName": "Parviz", 
            "id": "sg:person.016613110435.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016613110435.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gorgan University of Agricultural Sciences and Natural Resources", 
              "id": "https://www.grid.ac/institutes/grid.411765.0", 
              "name": [
                "Department of Water Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghorbani", 
            "givenName": "Khalil", 
            "id": "sg:person.07422360416.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07422360416.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1001327449", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-6849-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001327449", 
              "https://doi.org/10.1007/978-1-4614-6849-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-6849-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001327449", 
              "https://doi.org/10.1007/978-1-4614-6849-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-1923(88)90002-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006652422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-1923(88)90002-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006652422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4257(03)00069-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007064289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4257(03)00069-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007064289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s0100-204x2008000400002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007180741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0426(1999)016<0656:sbaieo>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007593264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2013.05.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008759128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jenvman.2010.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013286103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-1923(92)90060-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014912567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-1923(92)90060-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014912567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erp196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015429610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erp196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015429610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2014.03.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016646901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431169208904212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017606117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2011.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018099243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0034-4257(79)90013-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018726315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0034-4257(79)90013-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018726315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2014.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020728300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1475-2743.1989.tb00755.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021503078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2013.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021997556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4257(02)00135-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026232550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4257(02)00135-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026232550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-3624-4_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027753056", 
              "https://doi.org/10.1007/978-94-017-3624-4_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1161-0301(02)00109-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030636186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1161-0301(02)00109-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030636186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4257(02)00096-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031931019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2010.04.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033743905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/rs5041734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034190762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2008.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034901196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2011.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035468826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compag.2014.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038991170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2012.08.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040445559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agee.2012.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042147798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/rs5041588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044265908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/rs71215820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045695766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-3335-2_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046201476", 
              "https://doi.org/10.1007/978-90-481-3335-2_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-3335-2_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046201476", 
              "https://doi.org/10.1007/978-90-481-3335-2_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2012.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048939450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0034-4257(95)00186-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049892526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj14.0200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068978963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj1999.916946x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068994166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2004.1139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068995161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2006.0103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068995591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/jpa1997.0283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069012452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1931815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069656225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1933912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069658145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5120/20639-3318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072602238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronmonogr31.c2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088349985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.2008.4779155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093693002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781482277999", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109726570"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "Data mining approaches are designed for classification problems in which each observation is a member of one and only one class. In this study, a non-deterministic approach based on C5.0 data mining algorithm has been employed for discriminating the phenological stages of maize from emergence to dough, in a field located in Karaj, Iran. Two readily-available predictors i.e. accumulated growing degree days (AGDD) and multi-temporal LANDSAT7-extracted normalized difference vegetation index (NDVI) was used to build the decision tree. The AGDD was calculated based on three cardinal thresholds of temperature i.e. effective minimum, optimum, effective maximum. The NDVI was compared with two recently developed indices namely, enhanced vegetation index2 (EVI2) and optimized soil adjusted vegetation index (OSAVI) using the signal to noise ratio (SNR) criterion. Findings confirmed that these three remotely sensed indices do not have significant differences, therefore, the smoothed time series of NDVI was used in the C5.0 algorithm. The precisions of classification by C5.0 data mining algorithm in partitioning of training and testing data were approximately 90.51 and 81.77%, respectively. The mean absolute error (MAE) values of the onset of maize phenological stages were estimated about 2.6\u20135.3 days for various stages by C5.0 model. While corresponding values for the classical AGDD model were 3.9\u201310.7 days. This confirms the skill of data mining approach in comparison with commonly-used the classical AGDD model in applications of real time monitoring.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s42106-018-0030-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040106", 
            "issn": [
              "1735-6814", 
              "1735-8043"
            ], 
            "name": "International Journal of Plant Production", 
            "type": "Periodical"
          }
        ], 
        "name": "Comparison of Data Mining and GDD-Based Models in Discrimination of Maize Phenology", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1b5a7486cf0894c1ac9da4d36fd43fe443cdf16feb58250ce3d6b9ae76fb0f05"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s42106-018-0030-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109816211"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s42106-018-0030-2", 
          "https://app.dimensions.ai/details/publication/pub.1109816211"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000610.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs42106-018-0030-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42106-018-0030-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42106-018-0030-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42106-018-0030-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42106-018-0030-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      69 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s42106-018-0030-2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc4fe4b797e2a4bedbe869e5eba2cbb6d
    4 schema:citation sg:pub.10.1007/978-1-4614-6849-3
    5 sg:pub.10.1007/978-90-481-3335-2_9
    6 sg:pub.10.1007/978-94-017-3624-4_8
    7 https://app.dimensions.ai/details/publication/pub.1001327449
    8 https://doi.org/10.1016/0034-4257(79)90013-0
    9 https://doi.org/10.1016/0034-4257(95)00186-7
    10 https://doi.org/10.1016/0168-1923(88)90002-0
    11 https://doi.org/10.1016/0168-1923(92)90060-h
    12 https://doi.org/10.1016/j.agee.2012.02.007
    13 https://doi.org/10.1016/j.compag.2014.08.011
    14 https://doi.org/10.1016/j.fcr.2013.05.028
    15 https://doi.org/10.1016/j.jenvman.2010.01.001
    16 https://doi.org/10.1016/j.rse.2008.06.006
    17 https://doi.org/10.1016/j.rse.2010.04.019
    18 https://doi.org/10.1016/j.rse.2011.01.009
    19 https://doi.org/10.1016/j.rse.2011.10.006
    20 https://doi.org/10.1016/j.rse.2012.04.002
    21 https://doi.org/10.1016/j.rse.2012.08.009
    22 https://doi.org/10.1016/j.rse.2013.01.010
    23 https://doi.org/10.1016/j.rse.2014.03.001
    24 https://doi.org/10.1016/j.rse.2014.03.017
    25 https://doi.org/10.1016/s0034-4257(02)00096-2
    26 https://doi.org/10.1016/s0034-4257(02)00135-9
    27 https://doi.org/10.1016/s0034-4257(03)00069-5
    28 https://doi.org/10.1016/s1161-0301(02)00109-0
    29 https://doi.org/10.1080/01431169208904212
    30 https://doi.org/10.1093/jxb/erp196
    31 https://doi.org/10.1109/igarss.2008.4779155
    32 https://doi.org/10.1111/j.1475-2743.1989.tb00755.x
    33 https://doi.org/10.1175/1520-0426(1999)016<0656:sbaieo>2.0.co;2
    34 https://doi.org/10.1201/9781482277999
    35 https://doi.org/10.1590/s0100-204x2008000400002
    36 https://doi.org/10.2134/agronj14.0200
    37 https://doi.org/10.2134/agronj1999.916946x
    38 https://doi.org/10.2134/agronj2004.1139
    39 https://doi.org/10.2134/agronj2006.0103
    40 https://doi.org/10.2134/agronmonogr31.c2
    41 https://doi.org/10.2134/jpa1997.0283
    42 https://doi.org/10.2307/1931815
    43 https://doi.org/10.2307/1933912
    44 https://doi.org/10.3390/rs5041588
    45 https://doi.org/10.3390/rs5041734
    46 https://doi.org/10.3390/rs71215820
    47 https://doi.org/10.5120/20639-3318
    48 schema:datePublished 2019-03
    49 schema:datePublishedReg 2019-03-01
    50 schema:description Data mining approaches are designed for classification problems in which each observation is a member of one and only one class. In this study, a non-deterministic approach based on C5.0 data mining algorithm has been employed for discriminating the phenological stages of maize from emergence to dough, in a field located in Karaj, Iran. Two readily-available predictors i.e. accumulated growing degree days (AGDD) and multi-temporal LANDSAT7-extracted normalized difference vegetation index (NDVI) was used to build the decision tree. The AGDD was calculated based on three cardinal thresholds of temperature i.e. effective minimum, optimum, effective maximum. The NDVI was compared with two recently developed indices namely, enhanced vegetation index2 (EVI2) and optimized soil adjusted vegetation index (OSAVI) using the signal to noise ratio (SNR) criterion. Findings confirmed that these three remotely sensed indices do not have significant differences, therefore, the smoothed time series of NDVI was used in the C5.0 algorithm. The precisions of classification by C5.0 data mining algorithm in partitioning of training and testing data were approximately 90.51 and 81.77%, respectively. The mean absolute error (MAE) values of the onset of maize phenological stages were estimated about 2.6–5.3 days for various stages by C5.0 model. While corresponding values for the classical AGDD model were 3.9–10.7 days. This confirms the skill of data mining approach in comparison with commonly-used the classical AGDD model in applications of real time monitoring.
    51 schema:genre research_article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree false
    54 schema:isPartOf sg:journal.1040106
    55 schema:name Comparison of Data Mining and GDD-Based Models in Discrimination of Maize Phenology
    56 schema:pagination 1-12
    57 schema:productId N742f318eb9e7480b8b54c1e595e10b97
    58 Na9902c7a15c14b8e9881869ecfaceb34
    59 Nd01536adcbae44d69c721c0fdde50ccf
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109816211
    61 https://doi.org/10.1007/s42106-018-0030-2
    62 schema:sdDatePublished 2019-04-10T14:24
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher Nb548400dcb624a66ad1a6559c11e7ac8
    65 schema:url https://link.springer.com/10.1007%2Fs42106-018-0030-2
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N090465634d1f45e28183a0c36756c8a2 rdf:first sg:person.016613110435.61
    70 rdf:rest N1c7a9f241f7d40df9ff0d17f7041ad50
    71 N1c7a9f241f7d40df9ff0d17f7041ad50 rdf:first sg:person.07422360416.45
    72 rdf:rest rdf:nil
    73 N20922a195c394eb4a0419eca3f3e88b4 rdf:first sg:person.013134550757.25
    74 rdf:rest N090465634d1f45e28183a0c36756c8a2
    75 N628cba7287b64d0d8e436358148f39ba schema:affiliation https://www.grid.ac/institutes/grid.46072.37
    76 schema:familyName Ghamghami
    77 schema:givenName Mahdi
    78 rdf:type schema:Person
    79 N742f318eb9e7480b8b54c1e595e10b97 schema:name dimensions_id
    80 schema:value pub.1109816211
    81 rdf:type schema:PropertyValue
    82 Na9902c7a15c14b8e9881869ecfaceb34 schema:name doi
    83 schema:value 10.1007/s42106-018-0030-2
    84 rdf:type schema:PropertyValue
    85 Nb548400dcb624a66ad1a6559c11e7ac8 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 Nc4fe4b797e2a4bedbe869e5eba2cbb6d rdf:first N628cba7287b64d0d8e436358148f39ba
    88 rdf:rest N20922a195c394eb4a0419eca3f3e88b4
    89 Nd01536adcbae44d69c721c0fdde50ccf schema:name readcube_id
    90 schema:value 1b5a7486cf0894c1ac9da4d36fd43fe443cdf16feb58250ce3d6b9ae76fb0f05
    91 rdf:type schema:PropertyValue
    92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Information and Computing Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Artificial Intelligence and Image Processing
    97 rdf:type schema:DefinedTerm
    98 sg:journal.1040106 schema:issn 1735-6814
    99 1735-8043
    100 schema:name International Journal of Plant Production
    101 rdf:type schema:Periodical
    102 sg:person.013134550757.25 schema:affiliation https://www.grid.ac/institutes/grid.46072.37
    103 schema:familyName Ghahreman
    104 schema:givenName Nozar
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013134550757.25
    106 rdf:type schema:Person
    107 sg:person.016613110435.61 schema:affiliation https://www.grid.ac/institutes/grid.46072.37
    108 schema:familyName Irannejad
    109 schema:givenName Parviz
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016613110435.61
    111 rdf:type schema:Person
    112 sg:person.07422360416.45 schema:affiliation https://www.grid.ac/institutes/grid.411765.0
    113 schema:familyName Ghorbani
    114 schema:givenName Khalil
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07422360416.45
    116 rdf:type schema:Person
    117 sg:pub.10.1007/978-1-4614-6849-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001327449
    118 https://doi.org/10.1007/978-1-4614-6849-3
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-90-481-3335-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046201476
    121 https://doi.org/10.1007/978-90-481-3335-2_9
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-94-017-3624-4_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027753056
    124 https://doi.org/10.1007/978-94-017-3624-4_8
    125 rdf:type schema:CreativeWork
    126 https://app.dimensions.ai/details/publication/pub.1001327449 schema:CreativeWork
    127 https://doi.org/10.1016/0034-4257(79)90013-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018726315
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/0034-4257(95)00186-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049892526
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/0168-1923(88)90002-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006652422
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/0168-1923(92)90060-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1014912567
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.agee.2012.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042147798
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.compag.2014.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038991170
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.fcr.2013.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008759128
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.jenvman.2010.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013286103
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.rse.2008.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034901196
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.rse.2010.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033743905
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.rse.2011.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035468826
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.rse.2011.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018099243
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.rse.2012.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048939450
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.rse.2012.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040445559
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.rse.2013.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021997556
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.rse.2014.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020728300
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.rse.2014.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016646901
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/s0034-4257(02)00096-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031931019
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/s0034-4257(02)00135-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026232550
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/s0034-4257(03)00069-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007064289
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/s1161-0301(02)00109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030636186
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1080/01431169208904212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017606117
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1093/jxb/erp196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015429610
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/igarss.2008.4779155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093693002
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1111/j.1475-2743.1989.tb00755.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021503078
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1175/1520-0426(1999)016<0656:sbaieo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007593264
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1201/9781482277999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109726570
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1590/s0100-204x2008000400002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007180741
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.2134/agronj14.0200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068978963
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.2134/agronj1999.916946x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068994166
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.2134/agronj2004.1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995161
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.2134/agronj2006.0103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995591
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.2134/agronmonogr31.c2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088349985
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.2134/jpa1997.0283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069012452
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.2307/1931815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656225
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.2307/1933912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069658145
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.3390/rs5041588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265908
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.3390/rs5041734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034190762
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.3390/rs71215820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045695766
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.5120/20639-3318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072602238
    206 rdf:type schema:CreativeWork
    207 https://www.grid.ac/institutes/grid.411765.0 schema:alternateName Gorgan University of Agricultural Sciences and Natural Resources
    208 schema:name Department of Water Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
    209 rdf:type schema:Organization
    210 https://www.grid.ac/institutes/grid.46072.37 schema:alternateName University of Tehran
    211 schema:name Department of Irrigation and Reclamation Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
    212 Geophysics Institute, University of Tehran, Tehran, Iran
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...