A cylindrical distribution with heavy-tailed linear part View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-07

AUTHORS

Tomoaki Imoto, Kunio Shimizu, Toshihiro Abe

ABSTRACT

A cylindrical distribution whose linear part models heavy-tailedness is proposed. The conditional distribution of the linear variable given the circular variable is a generalized Pareto-type distribution. Therefore, it may not have any conditional moments; however, the mode and median have closed-form expressions. The circular marginal distribution is a wrapped Cauchy distribution, and the conditional distribution of the circular variable given the linear variable belongs to a family of symmetric distributions. These properties allow its application to cylindrical data, whose linear observations may take large values and whose circular observations are symmetric. As illustrative examples, the proposed distribution is fitted to two data sets, and the results are compared with those by other cylindrical distributions that cannot model heavy-tailedness for the linear parts. More... »

PAGES

1-26

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s42081-019-00031-5

DOI

http://dx.doi.org/10.1007/s42081-019-00031-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111949861


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "School of Management and Information, University of Shizuoka, Shizuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imoto", 
        "givenName": "Tomoaki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Organization of Information and Systems", 
          "id": "https://www.grid.ac/institutes/grid.418987.b", 
          "name": [
            "School of Statistical Thinking, The Institute of Statistical Mathematics, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimizu", 
        "givenName": "Kunio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanzan University", 
          "id": "https://www.grid.ac/institutes/grid.444385.a", 
          "name": [
            "Department of Systems and Mathematical Science, Faculty of Science and Engineering, Nanzan University, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abe", 
        "givenName": "Toshihiro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jspi.2006.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000175467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00379695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001391729", 
          "https://doi.org/10.1007/bf00379695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00379695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001391729", 
          "https://doi.org/10.1007/bf00379695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/oik.02858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002118927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.2355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009800030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/072294b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016264509", 
          "https://doi.org/10.1038/072294b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/072294b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016264509", 
          "https://doi.org/10.1038/072294b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/rssc.12124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016993708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010012224103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026028878", 
          "https://doi.org/10.1023/a:1010012224103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecosta.2016.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028826311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10651-015-0338-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032456032", 
          "https://doi.org/10.1007/s10651-015-0338-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3316098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039509866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1050963300", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-9473-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050963300", 
          "https://doi.org/10.1007/978-1-4419-9473-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-9473-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050963300", 
          "https://doi.org/10.1007/978-1-4419-9473-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2012.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052221269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-009-0277-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052335551", 
          "https://doi.org/10.1007/s00362-009-0277-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1978.10480062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2014.934454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058306263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/sta-120003131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058436381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2335637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069896011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2532334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5705/ss.2013.204w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073080527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511564345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108236318", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781315119472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108236318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1977.tb01619.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1977.tb01619.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1978.tb01668.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1978.tb01668.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458132"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-07", 
    "datePublishedReg": "2019-02-07", 
    "description": "A cylindrical distribution whose linear part models heavy-tailedness is proposed. The conditional distribution of the linear variable given the circular variable is a generalized Pareto-type distribution. Therefore, it may not have any conditional moments; however, the mode and median have closed-form expressions. The circular marginal distribution is a wrapped Cauchy distribution, and the conditional distribution of the circular variable given the linear variable belongs to a family of symmetric distributions. These properties allow its application to cylindrical data, whose linear observations may take large values and whose circular observations are symmetric. As illustrative examples, the proposed distribution is fitted to two data sets, and the results are compared with those by other cylindrical distributions that cannot model heavy-tailedness for the linear parts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s42081-019-00031-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7540289", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1320456", 
        "issn": [
          "2520-8756", 
          "2520-8764"
        ], 
        "name": "Japanese Journal of Statistics and Data Science", 
        "type": "Periodical"
      }
    ], 
    "name": "A cylindrical distribution with heavy-tailed linear part", 
    "pagination": "1-26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0f9b225bb5f9a1622bcfbb7ff6673ae8a0d65dbd5c73aabc528e8607991b3cd4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s42081-019-00031-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111949861"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s42081-019-00031-5", 
      "https://app.dimensions.ai/details/publication/pub.1111949861"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45374_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs42081-019-00031-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s42081-019-00031-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s42081-019-00031-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s42081-019-00031-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s42081-019-00031-5'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      49 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s42081-019-00031-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N700f1325b0c44eb896940d88af697f46
4 schema:citation sg:pub.10.1007/978-1-4419-9473-8
5 sg:pub.10.1007/bf00379695
6 sg:pub.10.1007/s00362-009-0277-x
7 sg:pub.10.1007/s10651-015-0338-3
8 sg:pub.10.1023/a:1010012224103
9 sg:pub.10.1038/072294b0
10 https://app.dimensions.ai/details/publication/pub.1050963300
11 https://app.dimensions.ai/details/publication/pub.1108236318
12 https://doi.org/10.1002/env.2355
13 https://doi.org/10.1016/j.csda.2012.07.025
14 https://doi.org/10.1016/j.ecosta.2016.04.001
15 https://doi.org/10.1016/j.jspi.2006.12.009
16 https://doi.org/10.1017/cbo9780511564345
17 https://doi.org/10.1080/01621459.1978.10480062
18 https://doi.org/10.1080/01621459.2014.934454
19 https://doi.org/10.1081/sta-120003131
20 https://doi.org/10.1111/j.2517-6161.1977.tb01619.x
21 https://doi.org/10.1111/j.2517-6161.1978.tb01668.x
22 https://doi.org/10.1111/oik.02858
23 https://doi.org/10.1111/rssc.12124
24 https://doi.org/10.1201/9781315119472
25 https://doi.org/10.2307/2335637
26 https://doi.org/10.2307/2532334
27 https://doi.org/10.2307/3316098
28 https://doi.org/10.5705/ss.2013.204w
29 schema:datePublished 2019-02-07
30 schema:datePublishedReg 2019-02-07
31 schema:description A cylindrical distribution whose linear part models heavy-tailedness is proposed. The conditional distribution of the linear variable given the circular variable is a generalized Pareto-type distribution. Therefore, it may not have any conditional moments; however, the mode and median have closed-form expressions. The circular marginal distribution is a wrapped Cauchy distribution, and the conditional distribution of the circular variable given the linear variable belongs to a family of symmetric distributions. These properties allow its application to cylindrical data, whose linear observations may take large values and whose circular observations are symmetric. As illustrative examples, the proposed distribution is fitted to two data sets, and the results are compared with those by other cylindrical distributions that cannot model heavy-tailedness for the linear parts.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf sg:journal.1320456
36 schema:name A cylindrical distribution with heavy-tailed linear part
37 schema:pagination 1-26
38 schema:productId N030fa56531264e92a97c5b4c90cda4d3
39 Ne96603a48c284ec2a4d85f7bc0ea069c
40 Nf0e360489af840ca8188ff7bf03d7298
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111949861
42 https://doi.org/10.1007/s42081-019-00031-5
43 schema:sdDatePublished 2019-04-11T11:14
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Ne6a1dc01d02244cd96fc2a13775b90f0
46 schema:url https://link.springer.com/10.1007%2Fs42081-019-00031-5
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N030fa56531264e92a97c5b4c90cda4d3 schema:name readcube_id
51 schema:value 0f9b225bb5f9a1622bcfbb7ff6673ae8a0d65dbd5c73aabc528e8607991b3cd4
52 rdf:type schema:PropertyValue
53 N16671ad92d514aadbd2ba2ebbe6b8180 schema:name School of Management and Information, University of Shizuoka, Shizuoka, Japan
54 rdf:type schema:Organization
55 N1e57644f93d14d03a2c6d326e41d19d1 schema:affiliation N16671ad92d514aadbd2ba2ebbe6b8180
56 schema:familyName Imoto
57 schema:givenName Tomoaki
58 rdf:type schema:Person
59 N39047577071c4ec7b7a0d36cf40fa471 rdf:first N6ef9a07cfe484628ad42cf8ef17cc1fa
60 rdf:rest N797b09ae9e554ad6931ae721b75e6aba
61 N4923713caf704f65a1e8350d75c07326 schema:affiliation https://www.grid.ac/institutes/grid.444385.a
62 schema:familyName Abe
63 schema:givenName Toshihiro
64 rdf:type schema:Person
65 N6ef9a07cfe484628ad42cf8ef17cc1fa schema:affiliation https://www.grid.ac/institutes/grid.418987.b
66 schema:familyName Shimizu
67 schema:givenName Kunio
68 rdf:type schema:Person
69 N700f1325b0c44eb896940d88af697f46 rdf:first N1e57644f93d14d03a2c6d326e41d19d1
70 rdf:rest N39047577071c4ec7b7a0d36cf40fa471
71 N797b09ae9e554ad6931ae721b75e6aba rdf:first N4923713caf704f65a1e8350d75c07326
72 rdf:rest rdf:nil
73 Ne6a1dc01d02244cd96fc2a13775b90f0 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Ne96603a48c284ec2a4d85f7bc0ea069c schema:name doi
76 schema:value 10.1007/s42081-019-00031-5
77 rdf:type schema:PropertyValue
78 Nf0e360489af840ca8188ff7bf03d7298 schema:name dimensions_id
79 schema:value pub.1111949861
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
85 schema:name Statistics
86 rdf:type schema:DefinedTerm
87 sg:grant.7540289 http://pending.schema.org/fundedItem sg:pub.10.1007/s42081-019-00031-5
88 rdf:type schema:MonetaryGrant
89 sg:journal.1320456 schema:issn 2520-8756
90 2520-8764
91 schema:name Japanese Journal of Statistics and Data Science
92 rdf:type schema:Periodical
93 sg:pub.10.1007/978-1-4419-9473-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050963300
94 https://doi.org/10.1007/978-1-4419-9473-8
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00379695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001391729
97 https://doi.org/10.1007/bf00379695
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00362-009-0277-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052335551
100 https://doi.org/10.1007/s00362-009-0277-x
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10651-015-0338-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032456032
103 https://doi.org/10.1007/s10651-015-0338-3
104 rdf:type schema:CreativeWork
105 sg:pub.10.1023/a:1010012224103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026028878
106 https://doi.org/10.1023/a:1010012224103
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/072294b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016264509
109 https://doi.org/10.1038/072294b0
110 rdf:type schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1050963300 schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1108236318 schema:CreativeWork
113 https://doi.org/10.1002/env.2355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009800030
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.csda.2012.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052221269
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ecosta.2016.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028826311
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jspi.2006.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000175467
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1017/cbo9780511564345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698821
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1080/01621459.1978.10480062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301981
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1080/01621459.2014.934454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306263
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1081/sta-120003131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058436381
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/j.2517-6161.1977.tb01619.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458070
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1111/j.2517-6161.1978.tb01668.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458132
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1111/oik.02858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002118927
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1111/rssc.12124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016993708
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1201/9781315119472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108236318
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2307/2335637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069896011
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2307/2532334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977750
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2307/3316098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039509866
144 rdf:type schema:CreativeWork
145 https://doi.org/10.5705/ss.2013.204w schema:sameAs https://app.dimensions.ai/details/publication/pub.1073080527
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.418987.b schema:alternateName Research Organization of Information and Systems
148 schema:name School of Statistical Thinking, The Institute of Statistical Mathematics, Tokyo, Japan
149 rdf:type schema:Organization
150 https://www.grid.ac/institutes/grid.444385.a schema:alternateName Nanzan University
151 schema:name Department of Systems and Mathematical Science, Faculty of Science and Engineering, Nanzan University, Nagoya, Japan
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...