Fault diagnosis of rolling element bearings using fractional linear prediction and AI techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-28

AUTHORS

Aditya Sharma, Sharad Bhardwaj, Pavan Kumar Kankar

ABSTRACT

Rolling element bearings are one of the widely used and most critical components a rotating machinery. The performance of bearings is utmost important in applications such as power plants, automobiles, turbines, aerospace, materials handling and many more. In this paper, a new technique, fractional linear prediction, is presented for the fault diagnosis of bearings. For the examination of the proposed methodology, the vibration data of two different types of bearings are selected and analyzed. Three artificial intelligence techniques—rotation forest, support vector machine and artificial neural network—are used for the investigations. Comparison is also carried out among the artificial intelligence techniques to show their effectiveness towards fault diagnosis. Results indicate the superiority of rotation forest over support vector machine and artificial neural network. More... »

PAGES

11-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8

DOI

http://dx.doi.org/10.1007/s41872-018-0062-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106387847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, 282005, Agra, UP, India", 
          "id": "http://www.grid.ac/institutes/grid.417769.a", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, 282005, Agra, UP, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Aditya", 
        "id": "sg:person.010202053610.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010202053610.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mechanical Engineering Discipline, ABES Engineering College, Campus 1, NH 24, 201009, Ghaziabad, UP, India", 
          "id": "http://www.grid.ac/institutes/grid.418403.a", 
          "name": [
            "Mechanical Engineering Discipline, ABES Engineering College, Campus 1, NH 24, 201009, Ghaziabad, UP, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhardwaj", 
        "givenName": "Sharad", 
        "id": "sg:person.015067045244.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067045244.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, 482005, Jabalpur, MP, India", 
          "id": "http://www.grid.ac/institutes/grid.444467.1", 
          "name": [
            "Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, 482005, Jabalpur, MP, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kankar", 
        "givenName": "Pavan Kumar", 
        "id": "sg:person.011621346722.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10916-011-9778-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017826881", 
          "https://doi.org/10.1007/s10916-011-9778-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23117-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053065646", 
          "https://doi.org/10.1007/978-3-642-23117-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40430-016-0540-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016660014", 
          "https://doi.org/10.1007/s40430-016-0540-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2233-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031387782", 
          "https://doi.org/10.1007/978-1-4471-2233-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41872-018-0044-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101550973", 
          "https://doi.org/10.1007/s41872-018-0044-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-28", 
    "datePublishedReg": "2018-08-28", 
    "description": "Rolling element bearings are one of the widely used and most critical components a rotating machinery. The performance of bearings is utmost important in applications such as power plants, automobiles, turbines, aerospace, materials handling and many more. In this paper, a new technique, fractional linear prediction, is presented for the fault diagnosis of bearings. For the examination of the proposed methodology, the vibration data of two different types of bearings are selected and analyzed. Three artificial intelligence techniques\u2014rotation forest, support vector machine and artificial neural network\u2014are used for the investigations. Comparison is also carried out among the artificial intelligence techniques to show their effectiveness towards fault diagnosis. Results indicate the superiority of rotation forest over support vector machine and artificial neural network.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41872-018-0062-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1299246", 
        "issn": [
          "2520-1352", 
          "2520-1360"
        ], 
        "name": "Life Cycle Reliability and Safety Engineering", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "artificial neural network", 
      "support vector machine", 
      "neural network", 
      "fault diagnosis", 
      "vector machine", 
      "artificial intelligence techniques", 
      "fractional linear prediction", 
      "AI techniques", 
      "intelligence techniques", 
      "linear prediction", 
      "Rotation Forest", 
      "element bearings", 
      "performance of bearings", 
      "machine", 
      "network", 
      "vibration data", 
      "material handling", 
      "power plants", 
      "new technique", 
      "bearing", 
      "technique", 
      "critical component", 
      "different types", 
      "superiority", 
      "turbine", 
      "prediction", 
      "aerospace", 
      "applications", 
      "performance", 
      "effectiveness", 
      "methodology", 
      "automobiles", 
      "handling", 
      "forest", 
      "data", 
      "components", 
      "investigation", 
      "results", 
      "comparison", 
      "types", 
      "plants", 
      "diagnosis", 
      "machinery", 
      "examination", 
      "paper"
    ], 
    "name": "Fault diagnosis of rolling element bearings using fractional linear prediction and AI techniques", 
    "pagination": "11-19", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106387847"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41872-018-0062-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41872-018-0062-8", 
      "https://app.dimensions.ai/details/publication/pub.1106387847"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_791.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41872-018-0062-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      74 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41872-018-0062-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb79b85e3efed417885481e917e1a43eb
4 schema:citation sg:pub.10.1007/978-1-4471-2233-3
5 sg:pub.10.1007/978-3-642-23117-9
6 sg:pub.10.1007/s10916-011-9778-y
7 sg:pub.10.1007/s40430-016-0540-8
8 sg:pub.10.1007/s41872-018-0044-x
9 schema:datePublished 2018-08-28
10 schema:datePublishedReg 2018-08-28
11 schema:description Rolling element bearings are one of the widely used and most critical components a rotating machinery. The performance of bearings is utmost important in applications such as power plants, automobiles, turbines, aerospace, materials handling and many more. In this paper, a new technique, fractional linear prediction, is presented for the fault diagnosis of bearings. For the examination of the proposed methodology, the vibration data of two different types of bearings are selected and analyzed. Three artificial intelligence techniques—rotation forest, support vector machine and artificial neural network—are used for the investigations. Comparison is also carried out among the artificial intelligence techniques to show their effectiveness towards fault diagnosis. Results indicate the superiority of rotation forest over support vector machine and artificial neural network.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N2f7ab48e92ed46d59e213dfcd5c2c670
15 N5c3c096b76124226ab9a114fc61c2811
16 sg:journal.1299246
17 schema:keywords AI techniques
18 Rotation Forest
19 aerospace
20 applications
21 artificial intelligence techniques
22 artificial neural network
23 automobiles
24 bearing
25 comparison
26 components
27 critical component
28 data
29 diagnosis
30 different types
31 effectiveness
32 element bearings
33 examination
34 fault diagnosis
35 forest
36 fractional linear prediction
37 handling
38 intelligence techniques
39 investigation
40 linear prediction
41 machine
42 machinery
43 material handling
44 methodology
45 network
46 neural network
47 new technique
48 paper
49 performance
50 performance of bearings
51 plants
52 power plants
53 prediction
54 results
55 superiority
56 support vector machine
57 technique
58 turbine
59 types
60 vector machine
61 vibration data
62 schema:name Fault diagnosis of rolling element bearings using fractional linear prediction and AI techniques
63 schema:pagination 11-19
64 schema:productId N084a9f291e414e98bf411fbce8046882
65 Ncaa5fe4bd97443678df14d3622dbf2e3
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106387847
67 https://doi.org/10.1007/s41872-018-0062-8
68 schema:sdDatePublished 2022-08-04T17:07
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N7a7a5b4b28624bf881bdf6f0a694bb54
71 schema:url https://doi.org/10.1007/s41872-018-0062-8
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N084a9f291e414e98bf411fbce8046882 schema:name doi
76 schema:value 10.1007/s41872-018-0062-8
77 rdf:type schema:PropertyValue
78 N20515910abec41e0b7d528ed64ba7997 rdf:first sg:person.015067045244.25
79 rdf:rest Ncdba8e7d1cd84448a0f215372c79167d
80 N2f7ab48e92ed46d59e213dfcd5c2c670 schema:volumeNumber 8
81 rdf:type schema:PublicationVolume
82 N5c3c096b76124226ab9a114fc61c2811 schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N7a7a5b4b28624bf881bdf6f0a694bb54 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nb79b85e3efed417885481e917e1a43eb rdf:first sg:person.010202053610.23
87 rdf:rest N20515910abec41e0b7d528ed64ba7997
88 Ncaa5fe4bd97443678df14d3622dbf2e3 schema:name dimensions_id
89 schema:value pub.1106387847
90 rdf:type schema:PropertyValue
91 Ncdba8e7d1cd84448a0f215372c79167d rdf:first sg:person.011621346722.57
92 rdf:rest rdf:nil
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:journal.1299246 schema:issn 2520-1352
100 2520-1360
101 schema:name Life Cycle Reliability and Safety Engineering
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.010202053610.23 schema:affiliation grid-institutes:grid.417769.a
105 schema:familyName Sharma
106 schema:givenName Aditya
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010202053610.23
108 rdf:type schema:Person
109 sg:person.011621346722.57 schema:affiliation grid-institutes:grid.444467.1
110 schema:familyName Kankar
111 schema:givenName Pavan Kumar
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57
113 rdf:type schema:Person
114 sg:person.015067045244.25 schema:affiliation grid-institutes:grid.418403.a
115 schema:familyName Bhardwaj
116 schema:givenName Sharad
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067045244.25
118 rdf:type schema:Person
119 sg:pub.10.1007/978-1-4471-2233-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031387782
120 https://doi.org/10.1007/978-1-4471-2233-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-642-23117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053065646
123 https://doi.org/10.1007/978-3-642-23117-9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10916-011-9778-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017826881
126 https://doi.org/10.1007/s10916-011-9778-y
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s40430-016-0540-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016660014
129 https://doi.org/10.1007/s40430-016-0540-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s41872-018-0044-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101550973
132 https://doi.org/10.1007/s41872-018-0044-x
133 rdf:type schema:CreativeWork
134 grid-institutes:grid.417769.a schema:alternateName Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, 282005, Agra, UP, India
135 schema:name Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, 282005, Agra, UP, India
136 rdf:type schema:Organization
137 grid-institutes:grid.418403.a schema:alternateName Mechanical Engineering Discipline, ABES Engineering College, Campus 1, NH 24, 201009, Ghaziabad, UP, India
138 schema:name Mechanical Engineering Discipline, ABES Engineering College, Campus 1, NH 24, 201009, Ghaziabad, UP, India
139 rdf:type schema:Organization
140 grid-institutes:grid.444467.1 schema:alternateName Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, 482005, Jabalpur, MP, India
141 schema:name Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, 482005, Jabalpur, MP, India
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...