Fault diagnosis of rolling element bearings using fractional linear prediction and AI techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-28

AUTHORS

Aditya Sharma, Sharad Bhardwaj, Pavan Kumar Kankar

ABSTRACT

Rolling element bearings are one of the widely used and most critical components a rotating machinery. The performance of bearings is utmost important in applications such as power plants, automobiles, turbines, aerospace, materials handling and many more. In this paper, a new technique, fractional linear prediction, is presented for the fault diagnosis of bearings. For the examination of the proposed methodology, the vibration data of two different types of bearings are selected and analyzed. Three artificial intelligence techniques—rotation forest, support vector machine and artificial neural network—are used for the investigations. Comparison is also carried out among the artificial intelligence techniques to show their effectiveness towards fault diagnosis. Results indicate the superiority of rotation forest over support vector machine and artificial neural network. More... »

PAGES

11-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8

DOI

http://dx.doi.org/10.1007/s41872-018-0062-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106387847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, 282005, Agra, UP, India", 
          "id": "http://www.grid.ac/institutes/grid.417769.a", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, 282005, Agra, UP, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Aditya", 
        "id": "sg:person.010202053610.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010202053610.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mechanical Engineering Discipline, ABES Engineering College, Campus 1, NH 24, 201009, Ghaziabad, UP, India", 
          "id": "http://www.grid.ac/institutes/grid.418403.a", 
          "name": [
            "Mechanical Engineering Discipline, ABES Engineering College, Campus 1, NH 24, 201009, Ghaziabad, UP, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhardwaj", 
        "givenName": "Sharad", 
        "id": "sg:person.015067045244.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067045244.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, 482005, Jabalpur, MP, India", 
          "id": "http://www.grid.ac/institutes/grid.444467.1", 
          "name": [
            "Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, 482005, Jabalpur, MP, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kankar", 
        "givenName": "Pavan Kumar", 
        "id": "sg:person.011621346722.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40430-016-0540-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016660014", 
          "https://doi.org/10.1007/s40430-016-0540-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23117-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053065646", 
          "https://doi.org/10.1007/978-3-642-23117-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10916-011-9778-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017826881", 
          "https://doi.org/10.1007/s10916-011-9778-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2233-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031387782", 
          "https://doi.org/10.1007/978-1-4471-2233-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41872-018-0044-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101550973", 
          "https://doi.org/10.1007/s41872-018-0044-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-28", 
    "datePublishedReg": "2018-08-28", 
    "description": "Rolling element bearings are one of the widely used and most critical components a rotating machinery. The performance of bearings is utmost important in applications such as power plants, automobiles, turbines, aerospace, materials handling and many more. In this paper, a new technique, fractional linear prediction, is presented for the fault diagnosis of bearings. For the examination of the proposed methodology, the vibration data of two different types of bearings are selected and analyzed. Three artificial intelligence techniques\u2014rotation forest, support vector machine and artificial neural network\u2014are used for the investigations. Comparison is also carried out among the artificial intelligence techniques to show their effectiveness towards fault diagnosis. Results indicate the superiority of rotation forest over support vector machine and artificial neural network.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41872-018-0062-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1299246", 
        "issn": [
          "2520-1352", 
          "2520-1360"
        ], 
        "name": "Life Cycle Reliability and Safety Engineering", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "artificial neural network", 
      "support vector machine", 
      "neural network", 
      "fault diagnosis", 
      "vector machine", 
      "artificial intelligence techniques", 
      "AI techniques", 
      "intelligence techniques", 
      "linear prediction", 
      "Rotation Forest", 
      "element bearings", 
      "fractional linear prediction", 
      "performance of bearings", 
      "machine", 
      "network", 
      "vibration data", 
      "material handling", 
      "power plants", 
      "new technique", 
      "bearing", 
      "technique", 
      "critical component", 
      "different types", 
      "turbine", 
      "superiority", 
      "aerospace", 
      "prediction", 
      "applications", 
      "performance", 
      "effectiveness", 
      "methodology", 
      "automobiles", 
      "handling", 
      "data", 
      "forest", 
      "components", 
      "investigation", 
      "results", 
      "comparison", 
      "types", 
      "plants", 
      "machinery", 
      "diagnosis", 
      "examination", 
      "paper"
    ], 
    "name": "Fault diagnosis of rolling element bearings using fractional linear prediction and AI techniques", 
    "pagination": "11-19", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106387847"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41872-018-0062-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41872-018-0062-8", 
      "https://app.dimensions.ai/details/publication/pub.1106387847"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_779.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41872-018-0062-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41872-018-0062-8'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      22 PREDICATES      75 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41872-018-0062-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne339c85f8e364a60974d0ddad50ee669
4 schema:citation sg:pub.10.1007/978-1-4471-2233-3
5 sg:pub.10.1007/978-3-642-23117-9
6 sg:pub.10.1007/s10916-011-9778-y
7 sg:pub.10.1007/s40430-016-0540-8
8 sg:pub.10.1007/s41872-018-0044-x
9 schema:datePublished 2018-08-28
10 schema:datePublishedReg 2018-08-28
11 schema:description Rolling element bearings are one of the widely used and most critical components a rotating machinery. The performance of bearings is utmost important in applications such as power plants, automobiles, turbines, aerospace, materials handling and many more. In this paper, a new technique, fractional linear prediction, is presented for the fault diagnosis of bearings. For the examination of the proposed methodology, the vibration data of two different types of bearings are selected and analyzed. Three artificial intelligence techniques—rotation forest, support vector machine and artificial neural network—are used for the investigations. Comparison is also carried out among the artificial intelligence techniques to show their effectiveness towards fault diagnosis. Results indicate the superiority of rotation forest over support vector machine and artificial neural network.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N7311c437a7e34d25a3605f24af702202
16 Nf295259144504f48b46681a1685a7b0c
17 sg:journal.1299246
18 schema:keywords AI techniques
19 Rotation Forest
20 aerospace
21 applications
22 artificial intelligence techniques
23 artificial neural network
24 automobiles
25 bearing
26 comparison
27 components
28 critical component
29 data
30 diagnosis
31 different types
32 effectiveness
33 element bearings
34 examination
35 fault diagnosis
36 forest
37 fractional linear prediction
38 handling
39 intelligence techniques
40 investigation
41 linear prediction
42 machine
43 machinery
44 material handling
45 methodology
46 network
47 neural network
48 new technique
49 paper
50 performance
51 performance of bearings
52 plants
53 power plants
54 prediction
55 results
56 superiority
57 support vector machine
58 technique
59 turbine
60 types
61 vector machine
62 vibration data
63 schema:name Fault diagnosis of rolling element bearings using fractional linear prediction and AI techniques
64 schema:pagination 11-19
65 schema:productId N66c1501ac4364dc4b9eadb532134b07b
66 Nfc1c7b6009da41a1b4cbad22237922a4
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106387847
68 https://doi.org/10.1007/s41872-018-0062-8
69 schema:sdDatePublished 2022-06-01T22:17
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N9574d02569e8432397a71c75660e4294
72 schema:url https://doi.org/10.1007/s41872-018-0062-8
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N66c1501ac4364dc4b9eadb532134b07b schema:name doi
77 schema:value 10.1007/s41872-018-0062-8
78 rdf:type schema:PropertyValue
79 N7311c437a7e34d25a3605f24af702202 schema:volumeNumber 8
80 rdf:type schema:PublicationVolume
81 N7d539233a03141228124de999757be3d rdf:first sg:person.015067045244.25
82 rdf:rest Nc1c29524a0ac4fe9945f3a56e07103e4
83 N9574d02569e8432397a71c75660e4294 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nc1c29524a0ac4fe9945f3a56e07103e4 rdf:first sg:person.011621346722.57
86 rdf:rest rdf:nil
87 Ne339c85f8e364a60974d0ddad50ee669 rdf:first sg:person.010202053610.23
88 rdf:rest N7d539233a03141228124de999757be3d
89 Nf295259144504f48b46681a1685a7b0c schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 Nfc1c7b6009da41a1b4cbad22237922a4 schema:name dimensions_id
92 schema:value pub.1106387847
93 rdf:type schema:PropertyValue
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:journal.1299246 schema:issn 2520-1352
101 2520-1360
102 schema:name Life Cycle Reliability and Safety Engineering
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.010202053610.23 schema:affiliation grid-institutes:grid.417769.a
106 schema:familyName Sharma
107 schema:givenName Aditya
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010202053610.23
109 rdf:type schema:Person
110 sg:person.011621346722.57 schema:affiliation grid-institutes:grid.444467.1
111 schema:familyName Kankar
112 schema:givenName Pavan Kumar
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57
114 rdf:type schema:Person
115 sg:person.015067045244.25 schema:affiliation grid-institutes:grid.418403.a
116 schema:familyName Bhardwaj
117 schema:givenName Sharad
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067045244.25
119 rdf:type schema:Person
120 sg:pub.10.1007/978-1-4471-2233-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031387782
121 https://doi.org/10.1007/978-1-4471-2233-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-642-23117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053065646
124 https://doi.org/10.1007/978-3-642-23117-9
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10916-011-9778-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017826881
127 https://doi.org/10.1007/s10916-011-9778-y
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s40430-016-0540-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016660014
130 https://doi.org/10.1007/s40430-016-0540-8
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s41872-018-0044-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101550973
133 https://doi.org/10.1007/s41872-018-0044-x
134 rdf:type schema:CreativeWork
135 grid-institutes:grid.417769.a schema:alternateName Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, 282005, Agra, UP, India
136 schema:name Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, 282005, Agra, UP, India
137 rdf:type schema:Organization
138 grid-institutes:grid.418403.a schema:alternateName Mechanical Engineering Discipline, ABES Engineering College, Campus 1, NH 24, 201009, Ghaziabad, UP, India
139 schema:name Mechanical Engineering Discipline, ABES Engineering College, Campus 1, NH 24, 201009, Ghaziabad, UP, India
140 rdf:type schema:Organization
141 grid-institutes:grid.444467.1 schema:alternateName Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, 482005, Jabalpur, MP, India
142 schema:name Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, 482005, Jabalpur, MP, India
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...