Improvement in Surface Quality of Microchannel Structures Fabricated by Revolving Tip-Based Machining View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Bo Xue, Yanquan Geng, Dong Wang, Yazhou Sun, Yongda Yan

ABSTRACT

In the present paper, the process parameters of revolving tip-based machining were optimized for the fabrication of microchannel structures. It was found that in comparison with the micromilling process, the main factor affecting the surface quality of revolving tip-based machining originated from residual materials produced in each revolution. Three process parameters, including cutting depth, feeding rate, and tool path strategy, were studied experimentally to optimize the surface quality of the machined aluminum alloy and polymethylmethacrylate (PMMA). It was noticed that at smaller cutting depths (< 3 µm) and feeding rates (< 20 µm/s) with fixed revolving parameters (50 Hz frequency and 6 µm radius), microchannels with better bottom surfaces were formed. Two different types of tool path strategies were designed and compared to obtain the best surface quality (Sa) of aluminum alloy (21 nm) and PMMA (19 nm). More... »

PAGES

26-35

References to SciGraph publications

  • 2016-06. Machining slight burr formed micro-channels with different moving trajectories of a pyramidal diamond tip in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2010-09. A Rotating-Tip-Based Mechanical Nano-Manufacturing Process: Nanomilling in NANOSCALE RESEARCH LETTERS
  • 2014-04. An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2010-07. Effects of channel surface finish on blood flow in microfluidic devices in MICROSYSTEM TECHNOLOGIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41871-018-0032-9

    DOI

    http://dx.doi.org/10.1007/s41871-018-0032-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110265316


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xue", 
            "givenName": "Bo", 
            "id": "sg:person.01161401031.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161401031.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, People\u2019s Republic of China", 
                "Center for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geng", 
            "givenName": "Yanquan", 
            "id": "sg:person.013770005317.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013770005317.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Center for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Dong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Center for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Yazhou", 
            "id": "sg:person.016167421177.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167421177.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, People\u2019s Republic of China", 
                "Center for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, People\u2019s Republic of China", 
                "Harbin Institute of Technology, P.O. Box 413, 150001, Harbin, Heilongjiang, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Yongda", 
            "id": "sg:person.01074240653.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074240653.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2015.11.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004548150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-013-5555-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004858041", 
              "https://doi.org/10.1007/s00170-013-5555-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2005.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006473661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00542-009-1004-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008630024", 
              "https://doi.org/10.1007/s00542-009-1004-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00542-009-1004-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008630024", 
              "https://doi.org/10.1007/s00542-009-1004-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sca.21099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011095706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5lc00234f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012708757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2008.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014549735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2014.03.138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026086184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b300577a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027513632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2014.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032835870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7853-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034331609", 
              "https://doi.org/10.1007/s00170-015-7853-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11671-010-9653-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038865413", 
              "https://doi.org/10.1007/s11671-010-9653-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11671-010-9653-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038865413", 
              "https://doi.org/10.1007/s11671-010-9653-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apsusc.2009.09.092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041045584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6lc01430e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042927511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0960-1317/20/6/065016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044553187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0960-1317/20/6/065016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044553187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2006.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049041584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0043-1648(95)06697-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050808772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954405414535581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063883013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954405414535581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063883013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/mi8080258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091283274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmecsci.2018.09.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107254855"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "In the present paper, the process parameters of revolving tip-based machining were optimized for the fabrication of microchannel structures. It was found that in comparison with the micromilling process, the main factor affecting the surface quality of revolving tip-based machining originated from residual materials produced in each revolution. Three process parameters, including cutting depth, feeding rate, and tool path strategy, were studied experimentally to optimize the surface quality of the machined aluminum alloy and polymethylmethacrylate (PMMA). It was noticed that at smaller cutting depths (< 3 \u00b5m) and feeding rates (< 20 \u00b5m/s) with fixed revolving parameters (50 Hz frequency and 6 \u00b5m radius), microchannels with better bottom surfaces were formed. Two different types of tool path strategies were designed and compared to obtain the best surface quality (Sa) of aluminum alloy (21 nm) and PMMA (19 nm).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s41871-018-0032-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1301675", 
            "issn": [
              "2520-811X", 
              "2520-8128"
            ], 
            "name": "Nanomanufacturing and Metrology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Improvement in Surface Quality of Microchannel Structures Fabricated by Revolving Tip-Based Machining", 
        "pagination": "26-35", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "135071094aff0bd70896a0a4c19e48bf6b0f566ae6e87928303cef6c503325ea"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41871-018-0032-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110265316"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41871-018-0032-9", 
          "https://app.dimensions.ai/details/publication/pub.1110265316"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113655_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs41871-018-0032-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0032-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0032-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0032-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0032-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41871-018-0032-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nea8ff4e4a3e14b8397dc148db212aa1c
    4 schema:citation sg:pub.10.1007/s00170-013-5555-z
    5 sg:pub.10.1007/s00170-015-7853-0
    6 sg:pub.10.1007/s00542-009-1004-1
    7 sg:pub.10.1007/s11671-010-9653-7
    8 https://doi.org/10.1002/sca.21099
    9 https://doi.org/10.1016/0043-1648(95)06697-7
    10 https://doi.org/10.1016/j.apsusc.2009.09.092
    11 https://doi.org/10.1016/j.cirp.2006.10.006
    12 https://doi.org/10.1016/j.cirp.2014.03.138
    13 https://doi.org/10.1016/j.ijmecsci.2018.09.044
    14 https://doi.org/10.1016/j.jbiomech.2015.11.031
    15 https://doi.org/10.1016/j.jmatprotec.2014.11.003
    16 https://doi.org/10.1016/j.msea.2005.11.002
    17 https://doi.org/10.1016/j.precisioneng.2008.10.006
    18 https://doi.org/10.1039/b300577a
    19 https://doi.org/10.1039/c5lc00234f
    20 https://doi.org/10.1039/c6lc01430e
    21 https://doi.org/10.1088/0960-1317/20/6/065016
    22 https://doi.org/10.1177/0954405414535581
    23 https://doi.org/10.3390/mi8080258
    24 schema:datePublished 2019-03
    25 schema:datePublishedReg 2019-03-01
    26 schema:description In the present paper, the process parameters of revolving tip-based machining were optimized for the fabrication of microchannel structures. It was found that in comparison with the micromilling process, the main factor affecting the surface quality of revolving tip-based machining originated from residual materials produced in each revolution. Three process parameters, including cutting depth, feeding rate, and tool path strategy, were studied experimentally to optimize the surface quality of the machined aluminum alloy and polymethylmethacrylate (PMMA). It was noticed that at smaller cutting depths (< 3 µm) and feeding rates (< 20 µm/s) with fixed revolving parameters (50 Hz frequency and 6 µm radius), microchannels with better bottom surfaces were formed. Two different types of tool path strategies were designed and compared to obtain the best surface quality (Sa) of aluminum alloy (21 nm) and PMMA (19 nm).
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N92f70cb6abb04fa7a0865ae8be94b528
    31 Ndacdb616252f471abfbdf5a844342bd6
    32 sg:journal.1301675
    33 schema:name Improvement in Surface Quality of Microchannel Structures Fabricated by Revolving Tip-Based Machining
    34 schema:pagination 26-35
    35 schema:productId N5af6f490262f4db781146a2eca75fc09
    36 N63ccb0373dc5412bb96d03929026b42e
    37 N8d349ecee64046408c722da0544f5281
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110265316
    39 https://doi.org/10.1007/s41871-018-0032-9
    40 schema:sdDatePublished 2019-04-11T10:32
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher Nd0b26c309ccf4b48ab57f5d375f4686f
    43 schema:url https://link.springer.com/10.1007%2Fs41871-018-0032-9
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N2b10103d457543e5bdf893ddeeaacc9d schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    48 schema:familyName Wang
    49 schema:givenName Dong
    50 rdf:type schema:Person
    51 N3a358be0e82b4302a43fc8193ce5240d rdf:first N2b10103d457543e5bdf893ddeeaacc9d
    52 rdf:rest Nfc37689ffe2346989f5075d9030540d4
    53 N49cacce315424ba5a7a95eb8d969060a rdf:first sg:person.013770005317.50
    54 rdf:rest N3a358be0e82b4302a43fc8193ce5240d
    55 N5af6f490262f4db781146a2eca75fc09 schema:name doi
    56 schema:value 10.1007/s41871-018-0032-9
    57 rdf:type schema:PropertyValue
    58 N63ccb0373dc5412bb96d03929026b42e schema:name dimensions_id
    59 schema:value pub.1110265316
    60 rdf:type schema:PropertyValue
    61 N8d349ecee64046408c722da0544f5281 schema:name readcube_id
    62 schema:value 135071094aff0bd70896a0a4c19e48bf6b0f566ae6e87928303cef6c503325ea
    63 rdf:type schema:PropertyValue
    64 N92f70cb6abb04fa7a0865ae8be94b528 schema:volumeNumber 2
    65 rdf:type schema:PublicationVolume
    66 Nc00cf195461744929ff57b9e27b86539 rdf:first sg:person.01074240653.74
    67 rdf:rest rdf:nil
    68 Nd0b26c309ccf4b48ab57f5d375f4686f schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Ndacdb616252f471abfbdf5a844342bd6 schema:issueNumber 1
    71 rdf:type schema:PublicationIssue
    72 Nea8ff4e4a3e14b8397dc148db212aa1c rdf:first sg:person.01161401031.00
    73 rdf:rest N49cacce315424ba5a7a95eb8d969060a
    74 Nfc37689ffe2346989f5075d9030540d4 rdf:first sg:person.016167421177.22
    75 rdf:rest Nc00cf195461744929ff57b9e27b86539
    76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Engineering
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Materials Engineering
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1301675 schema:issn 2520-811X
    83 2520-8128
    84 schema:name Nanomanufacturing and Metrology
    85 rdf:type schema:Periodical
    86 sg:person.01074240653.74 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    87 schema:familyName Yan
    88 schema:givenName Yongda
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074240653.74
    90 rdf:type schema:Person
    91 sg:person.01161401031.00 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    92 schema:familyName Xue
    93 schema:givenName Bo
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161401031.00
    95 rdf:type schema:Person
    96 sg:person.013770005317.50 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    97 schema:familyName Geng
    98 schema:givenName Yanquan
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013770005317.50
    100 rdf:type schema:Person
    101 sg:person.016167421177.22 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    102 schema:familyName Sun
    103 schema:givenName Yazhou
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167421177.22
    105 rdf:type schema:Person
    106 sg:pub.10.1007/s00170-013-5555-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004858041
    107 https://doi.org/10.1007/s00170-013-5555-z
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00170-015-7853-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034331609
    110 https://doi.org/10.1007/s00170-015-7853-0
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s00542-009-1004-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008630024
    113 https://doi.org/10.1007/s00542-009-1004-1
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s11671-010-9653-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038865413
    116 https://doi.org/10.1007/s11671-010-9653-7
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1002/sca.21099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011095706
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/0043-1648(95)06697-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050808772
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.apsusc.2009.09.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041045584
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.cirp.2006.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049041584
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.cirp.2014.03.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026086184
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.ijmecsci.2018.09.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107254855
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.jbiomech.2015.11.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004548150
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.jmatprotec.2014.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032835870
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.msea.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006473661
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.precisioneng.2008.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014549735
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1039/b300577a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027513632
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1039/c5lc00234f schema:sameAs https://app.dimensions.ai/details/publication/pub.1012708757
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1039/c6lc01430e schema:sameAs https://app.dimensions.ai/details/publication/pub.1042927511
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1088/0960-1317/20/6/065016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044553187
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1177/0954405414535581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063883013
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.3390/mi8080258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091283274
    149 rdf:type schema:CreativeWork
    150 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
    151 schema:name Center for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, People’s Republic of China
    152 Harbin Institute of Technology, P.O. Box 413, 150001, Harbin, Heilongjiang, People’s Republic of China
    153 Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, People’s Republic of China
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...