Cutting Mechanism Investigation in Vibration-Assisted Machining View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Wanqun Chen, Lu Zheng, Xiangyu Teng, Kai Yang, Dehong Huo

ABSTRACT

In the process of vibration-assisted machining, high-frequency and small-amplitude vibration is superimposed to the motion of either the tool or the workpiece, which leads to a dramatic change of cutting mechanics. This paper investigates the cutting mechanism of vibration-assisted micro-machining by using finite element simulations and experiments. A finite element model of vibration-assisted milling process is established using the Johnson–Cook material and damage models. Cutting mechanism, in terms of chip formation, stress distribution, cutting force and burr formation, between the vibration-assisted machining and the conventional machining is compared, and the machining experiments are conducted to verify the simulation results. More... »

PAGES

1-9

References to SciGraph publications

  • 2012-11. Ultrasonic vibration-assisted milling of aluminum alloy in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2011-06. An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2008. Machining in NONE
  • 2016-02. Development of a Non-Resonant 3D Elliptical Vibration Cutting Apparatus for Diamond Turning in EXPERIMENTAL TECHNIQUES
  • 2015-09. Ultrasonic vibration-assisted machining: principle, design and application in ADVANCES IN MANUFACTURING
  • 2017-02. Experimental studies on matching performance of grinding and vibration parameters in ultrasonic assisted grinding of SiC ceramics in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2008-01. Characteristics of ultrasonic vibration-assisted ductile mode cutting of tungsten carbide in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2012-03. Effect of vibration on surface and tool wear in ultrasonic vibration-assisted scratching of brittle materials in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x

    DOI

    http://dx.doi.org/10.1007/s41871-018-0031-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110203806


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
                "Centre for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Wanqun", 
            "id": "sg:person.014177120211.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177120211.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Newcastle University", 
              "id": "https://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Lu", 
            "id": "sg:person.07611511044.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611511044.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Newcastle University", 
              "id": "https://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Teng", 
            "givenName": "Xiangyu", 
            "id": "sg:person.010350451531.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350451531.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Army Aviation Institute, 101123, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Kai", 
            "id": "sg:person.010667121453.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010667121453.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Newcastle University", 
              "id": "https://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huo", 
            "givenName": "Dehong", 
            "id": "sg:person.011257331411.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257331411.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s40436-015-0115-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006599929", 
              "https://doi.org/10.1007/s40436-015-0115-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2005.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010097667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2005.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010097667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84800-213-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014732337", 
              "https://doi.org/10.1007/978-1-84800-213-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1014732337", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10426914.2016.1198029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021660382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0761-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021678983", 
              "https://doi.org/10.1007/s00170-006-0761-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0761-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021678983", 
              "https://doi.org/10.1007/s00170-006-0761-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-010-2991-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025001199", 
              "https://doi.org/10.1007/s00170-010-2991-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2009.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027874144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2010.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033453186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3473-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034726180", 
              "https://doi.org/10.1007/s00170-011-3473-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3882-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042763878", 
              "https://doi.org/10.1007/s00170-011-3882-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2006.10.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043107045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40799-016-0021-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049179586", 
              "https://doi.org/10.1007/s40799-016-0021-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-8977-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049604493", 
              "https://doi.org/10.1007/s00170-016-8977-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-8977-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049604493", 
              "https://doi.org/10.1007/s00170-016-8977-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2007.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052005465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954405415586549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063883274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954405415586549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063883274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10426914.2017.1291958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083778253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-665x/aa71f0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085474956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-6439/aaa06f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099773190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mfglet.2018.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101316063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mfglet.2018.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101316063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954406218792360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106191041"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "In the process of vibration-assisted machining, high-frequency and small-amplitude vibration is superimposed to the motion of either the tool or the workpiece, which leads to a dramatic change of cutting mechanics. This paper investigates the cutting mechanism of vibration-assisted micro-machining by using finite element simulations and experiments. A finite element model of vibration-assisted milling process is established using the Johnson\u2013Cook material and damage models. Cutting mechanism, in terms of chip formation, stress distribution, cutting force and burr formation, between the vibration-assisted machining and the conventional machining is compared, and the machining experiments are conducted to verify the simulation results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s41871-018-0031-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3959750", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1301675", 
            "issn": [
              "2520-811X", 
              "2520-8128"
            ], 
            "name": "Nanomanufacturing and Metrology", 
            "type": "Periodical"
          }
        ], 
        "name": "Cutting Mechanism Investigation in Vibration-Assisted Machining", 
        "pagination": "1-9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "919f9b2d1474796dbe1a2698a5bd017f9abe076253e950f9bc9a5d78e879e4cf"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41871-018-0031-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110203806"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41871-018-0031-x", 
          "https://app.dimensions.ai/details/publication/pub.1110203806"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000274_0000000274/records_37032_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs41871-018-0031-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      21 PREDICATES      46 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41871-018-0031-x schema:about anzsrc-for:09
    2 anzsrc-for:0910
    3 schema:author Nddbd2788e98641c3b32083af41edf673
    4 schema:citation sg:pub.10.1007/978-1-84800-213-5
    5 sg:pub.10.1007/s00170-006-0761-6
    6 sg:pub.10.1007/s00170-010-2991-x
    7 sg:pub.10.1007/s00170-011-3473-5
    8 sg:pub.10.1007/s00170-011-3882-5
    9 sg:pub.10.1007/s00170-016-8977-6
    10 sg:pub.10.1007/s40436-015-0115-4
    11 sg:pub.10.1007/s40799-016-0021-0
    12 https://app.dimensions.ai/details/publication/pub.1014732337
    13 https://doi.org/10.1016/j.ijmachtools.2005.07.006
    14 https://doi.org/10.1016/j.ijmachtools.2006.10.007
    15 https://doi.org/10.1016/j.ijmachtools.2009.11.004
    16 https://doi.org/10.1016/j.jmatprotec.2010.09.010
    17 https://doi.org/10.1016/j.mfglet.2018.02.015
    18 https://doi.org/10.1016/j.precisioneng.2007.08.003
    19 https://doi.org/10.1080/10426914.2016.1198029
    20 https://doi.org/10.1080/10426914.2017.1291958
    21 https://doi.org/10.1088/1361-6439/aaa06f
    22 https://doi.org/10.1088/1361-665x/aa71f0
    23 https://doi.org/10.1177/0954405415586549
    24 https://doi.org/10.1177/0954406218792360
    25 schema:datePublished 2018-12
    26 schema:datePublishedReg 2018-12-01
    27 schema:description In the process of vibration-assisted machining, high-frequency and small-amplitude vibration is superimposed to the motion of either the tool or the workpiece, which leads to a dramatic change of cutting mechanics. This paper investigates the cutting mechanism of vibration-assisted micro-machining by using finite element simulations and experiments. A finite element model of vibration-assisted milling process is established using the Johnson–Cook material and damage models. Cutting mechanism, in terms of chip formation, stress distribution, cutting force and burr formation, between the vibration-assisted machining and the conventional machining is compared, and the machining experiments are conducted to verify the simulation results.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf sg:journal.1301675
    32 schema:name Cutting Mechanism Investigation in Vibration-Assisted Machining
    33 schema:pagination 1-9
    34 schema:productId N91fee8bf6f464c8da90c84dddf7d2f46
    35 Ncac5d84d8f204d6188e4ca3b0b6ed5b1
    36 Need1acefca284475b3f37eae99b21c7c
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110203806
    38 https://doi.org/10.1007/s41871-018-0031-x
    39 schema:sdDatePublished 2019-04-11T08:13
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N276e092f7adf421d8aeafe0de04de01b
    42 schema:url https://link.springer.com/10.1007%2Fs41871-018-0031-x
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N0e10fec74a804dbb8926d1846c470aa1 rdf:first sg:person.010667121453.35
    47 rdf:rest Nc0c87ba7818243339c2971e7f622b766
    48 N276e092f7adf421d8aeafe0de04de01b schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N54cd41757b554e988f9a78fc76d17e1b rdf:first sg:person.010350451531.11
    51 rdf:rest N0e10fec74a804dbb8926d1846c470aa1
    52 N91fee8bf6f464c8da90c84dddf7d2f46 schema:name readcube_id
    53 schema:value 919f9b2d1474796dbe1a2698a5bd017f9abe076253e950f9bc9a5d78e879e4cf
    54 rdf:type schema:PropertyValue
    55 Naef0dd7a2b0e4eb193a7e78ee65f982b rdf:first sg:person.07611511044.40
    56 rdf:rest N54cd41757b554e988f9a78fc76d17e1b
    57 Nb7e9ab5c88d84474a79e3803c0e25680 schema:name Army Aviation Institute, 101123, Beijing, People’s Republic of China
    58 rdf:type schema:Organization
    59 Nc0c87ba7818243339c2971e7f622b766 rdf:first sg:person.011257331411.41
    60 rdf:rest rdf:nil
    61 Ncac5d84d8f204d6188e4ca3b0b6ed5b1 schema:name dimensions_id
    62 schema:value pub.1110203806
    63 rdf:type schema:PropertyValue
    64 Nddbd2788e98641c3b32083af41edf673 rdf:first sg:person.014177120211.64
    65 rdf:rest Naef0dd7a2b0e4eb193a7e78ee65f982b
    66 Need1acefca284475b3f37eae99b21c7c schema:name doi
    67 schema:value 10.1007/s41871-018-0031-x
    68 rdf:type schema:PropertyValue
    69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Engineering
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Manufacturing Engineering
    74 rdf:type schema:DefinedTerm
    75 sg:grant.3959750 http://pending.schema.org/fundedItem sg:pub.10.1007/s41871-018-0031-x
    76 rdf:type schema:MonetaryGrant
    77 sg:journal.1301675 schema:issn 2520-811X
    78 2520-8128
    79 schema:name Nanomanufacturing and Metrology
    80 rdf:type schema:Periodical
    81 sg:person.010350451531.11 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
    82 schema:familyName Teng
    83 schema:givenName Xiangyu
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350451531.11
    85 rdf:type schema:Person
    86 sg:person.010667121453.35 schema:affiliation Nb7e9ab5c88d84474a79e3803c0e25680
    87 schema:familyName Yang
    88 schema:givenName Kai
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010667121453.35
    90 rdf:type schema:Person
    91 sg:person.011257331411.41 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
    92 schema:familyName Huo
    93 schema:givenName Dehong
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257331411.41
    95 rdf:type schema:Person
    96 sg:person.014177120211.64 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    97 schema:familyName Chen
    98 schema:givenName Wanqun
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177120211.64
    100 rdf:type schema:Person
    101 sg:person.07611511044.40 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
    102 schema:familyName Zheng
    103 schema:givenName Lu
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611511044.40
    105 rdf:type schema:Person
    106 sg:pub.10.1007/978-1-84800-213-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014732337
    107 https://doi.org/10.1007/978-1-84800-213-5
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00170-006-0761-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678983
    110 https://doi.org/10.1007/s00170-006-0761-6
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s00170-010-2991-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025001199
    113 https://doi.org/10.1007/s00170-010-2991-x
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s00170-011-3473-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034726180
    116 https://doi.org/10.1007/s00170-011-3473-5
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00170-011-3882-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042763878
    119 https://doi.org/10.1007/s00170-011-3882-5
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00170-016-8977-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049604493
    122 https://doi.org/10.1007/s00170-016-8977-6
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s40436-015-0115-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006599929
    125 https://doi.org/10.1007/s40436-015-0115-4
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s40799-016-0021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049179586
    128 https://doi.org/10.1007/s40799-016-0021-0
    129 rdf:type schema:CreativeWork
    130 https://app.dimensions.ai/details/publication/pub.1014732337 schema:CreativeWork
    131 https://doi.org/10.1016/j.ijmachtools.2005.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010097667
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.ijmachtools.2006.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043107045
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.ijmachtools.2009.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027874144
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.jmatprotec.2010.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033453186
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.mfglet.2018.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101316063
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.precisioneng.2007.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052005465
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1080/10426914.2016.1198029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021660382
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1080/10426914.2017.1291958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083778253
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1088/1361-6439/aaa06f schema:sameAs https://app.dimensions.ai/details/publication/pub.1099773190
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1088/1361-665x/aa71f0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085474956
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1177/0954405415586549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063883274
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1177/0954406218792360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106191041
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.1006.7 schema:alternateName Newcastle University
    156 schema:name Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    157 rdf:type schema:Organization
    158 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
    159 schema:name Centre for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, People’s Republic of China
    160 Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...