Cutting Mechanism Investigation in Vibration-Assisted Machining View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Wanqun Chen, Lu Zheng, Xiangyu Teng, Kai Yang, Dehong Huo

ABSTRACT

In the process of vibration-assisted machining, high-frequency and small-amplitude vibration is superimposed to the motion of either the tool or the workpiece, which leads to a dramatic change of cutting mechanics. This paper investigates the cutting mechanism of vibration-assisted micro-machining by using finite element simulations and experiments. A finite element model of vibration-assisted milling process is established using the Johnson–Cook material and damage models. Cutting mechanism, in terms of chip formation, stress distribution, cutting force and burr formation, between the vibration-assisted machining and the conventional machining is compared, and the machining experiments are conducted to verify the simulation results. More... »

PAGES

1-9

References to SciGraph publications

  • 2012-11. Ultrasonic vibration-assisted milling of aluminum alloy in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2011-06. An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2008. Machining in NONE
  • 2016-02. Development of a Non-Resonant 3D Elliptical Vibration Cutting Apparatus for Diamond Turning in EXPERIMENTAL TECHNIQUES
  • 2015-09. Ultrasonic vibration-assisted machining: principle, design and application in ADVANCES IN MANUFACTURING
  • 2017-02. Experimental studies on matching performance of grinding and vibration parameters in ultrasonic assisted grinding of SiC ceramics in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2008-01. Characteristics of ultrasonic vibration-assisted ductile mode cutting of tungsten carbide in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2012-03. Effect of vibration on surface and tool wear in ultrasonic vibration-assisted scratching of brittle materials in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x

    DOI

    http://dx.doi.org/10.1007/s41871-018-0031-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110203806


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
                "Centre for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Wanqun", 
            "id": "sg:person.014177120211.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177120211.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Newcastle University", 
              "id": "https://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Lu", 
            "id": "sg:person.07611511044.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611511044.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Newcastle University", 
              "id": "https://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Teng", 
            "givenName": "Xiangyu", 
            "id": "sg:person.010350451531.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350451531.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Army Aviation Institute, 101123, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Kai", 
            "id": "sg:person.010667121453.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010667121453.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Newcastle University", 
              "id": "https://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huo", 
            "givenName": "Dehong", 
            "id": "sg:person.011257331411.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257331411.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s40436-015-0115-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006599929", 
              "https://doi.org/10.1007/s40436-015-0115-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2005.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010097667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2005.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010097667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84800-213-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014732337", 
              "https://doi.org/10.1007/978-1-84800-213-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1014732337", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10426914.2016.1198029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021660382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0761-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021678983", 
              "https://doi.org/10.1007/s00170-006-0761-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0761-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021678983", 
              "https://doi.org/10.1007/s00170-006-0761-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-010-2991-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025001199", 
              "https://doi.org/10.1007/s00170-010-2991-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2009.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027874144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2010.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033453186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3473-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034726180", 
              "https://doi.org/10.1007/s00170-011-3473-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3882-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042763878", 
              "https://doi.org/10.1007/s00170-011-3882-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2006.10.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043107045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40799-016-0021-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049179586", 
              "https://doi.org/10.1007/s40799-016-0021-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-8977-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049604493", 
              "https://doi.org/10.1007/s00170-016-8977-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-8977-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049604493", 
              "https://doi.org/10.1007/s00170-016-8977-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2007.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052005465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954405415586549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063883274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954405415586549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063883274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10426914.2017.1291958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083778253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-665x/aa71f0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085474956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-6439/aaa06f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099773190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mfglet.2018.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101316063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mfglet.2018.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101316063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954406218792360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106191041"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "In the process of vibration-assisted machining, high-frequency and small-amplitude vibration is superimposed to the motion of either the tool or the workpiece, which leads to a dramatic change of cutting mechanics. This paper investigates the cutting mechanism of vibration-assisted micro-machining by using finite element simulations and experiments. A finite element model of vibration-assisted milling process is established using the Johnson\u2013Cook material and damage models. Cutting mechanism, in terms of chip formation, stress distribution, cutting force and burr formation, between the vibration-assisted machining and the conventional machining is compared, and the machining experiments are conducted to verify the simulation results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s41871-018-0031-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3959750", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1301675", 
            "issn": [
              "2520-811X", 
              "2520-8128"
            ], 
            "name": "Nanomanufacturing and Metrology", 
            "type": "Periodical"
          }
        ], 
        "name": "Cutting Mechanism Investigation in Vibration-Assisted Machining", 
        "pagination": "1-9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "919f9b2d1474796dbe1a2698a5bd017f9abe076253e950f9bc9a5d78e879e4cf"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41871-018-0031-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110203806"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41871-018-0031-x", 
          "https://app.dimensions.ai/details/publication/pub.1110203806"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000274_0000000274/records_37032_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs41871-018-0031-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0031-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      21 PREDICATES      46 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41871-018-0031-x schema:about anzsrc-for:09
    2 anzsrc-for:0910
    3 schema:author Ne0a4e3269259486e8e95ce62ffe20bf3
    4 schema:citation sg:pub.10.1007/978-1-84800-213-5
    5 sg:pub.10.1007/s00170-006-0761-6
    6 sg:pub.10.1007/s00170-010-2991-x
    7 sg:pub.10.1007/s00170-011-3473-5
    8 sg:pub.10.1007/s00170-011-3882-5
    9 sg:pub.10.1007/s00170-016-8977-6
    10 sg:pub.10.1007/s40436-015-0115-4
    11 sg:pub.10.1007/s40799-016-0021-0
    12 https://app.dimensions.ai/details/publication/pub.1014732337
    13 https://doi.org/10.1016/j.ijmachtools.2005.07.006
    14 https://doi.org/10.1016/j.ijmachtools.2006.10.007
    15 https://doi.org/10.1016/j.ijmachtools.2009.11.004
    16 https://doi.org/10.1016/j.jmatprotec.2010.09.010
    17 https://doi.org/10.1016/j.mfglet.2018.02.015
    18 https://doi.org/10.1016/j.precisioneng.2007.08.003
    19 https://doi.org/10.1080/10426914.2016.1198029
    20 https://doi.org/10.1080/10426914.2017.1291958
    21 https://doi.org/10.1088/1361-6439/aaa06f
    22 https://doi.org/10.1088/1361-665x/aa71f0
    23 https://doi.org/10.1177/0954405415586549
    24 https://doi.org/10.1177/0954406218792360
    25 schema:datePublished 2018-12
    26 schema:datePublishedReg 2018-12-01
    27 schema:description In the process of vibration-assisted machining, high-frequency and small-amplitude vibration is superimposed to the motion of either the tool or the workpiece, which leads to a dramatic change of cutting mechanics. This paper investigates the cutting mechanism of vibration-assisted micro-machining by using finite element simulations and experiments. A finite element model of vibration-assisted milling process is established using the Johnson–Cook material and damage models. Cutting mechanism, in terms of chip formation, stress distribution, cutting force and burr formation, between the vibration-assisted machining and the conventional machining is compared, and the machining experiments are conducted to verify the simulation results.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf sg:journal.1301675
    32 schema:name Cutting Mechanism Investigation in Vibration-Assisted Machining
    33 schema:pagination 1-9
    34 schema:productId N14da59f664504e00b849e26cdbf9897a
    35 N8f270b42c61b424fbaaefc417fcbfab9
    36 N9298e5fd00d448fc93bcabf26a0115cf
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110203806
    38 https://doi.org/10.1007/s41871-018-0031-x
    39 schema:sdDatePublished 2019-04-11T08:13
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N94b4e461c52847c08363c40833dba1e1
    42 schema:url https://link.springer.com/10.1007%2Fs41871-018-0031-x
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N14da59f664504e00b849e26cdbf9897a schema:name doi
    47 schema:value 10.1007/s41871-018-0031-x
    48 rdf:type schema:PropertyValue
    49 N16944aed28fe4a9da29c22468955ad49 rdf:first sg:person.010667121453.35
    50 rdf:rest Nfed5661a2574446ea6a799514b1db92d
    51 N4d34101eacbb427e925f97a063af9045 rdf:first sg:person.010350451531.11
    52 rdf:rest N16944aed28fe4a9da29c22468955ad49
    53 N6d8fb063f5f34762bbac111c09d1c635 rdf:first sg:person.07611511044.40
    54 rdf:rest N4d34101eacbb427e925f97a063af9045
    55 N8f270b42c61b424fbaaefc417fcbfab9 schema:name readcube_id
    56 schema:value 919f9b2d1474796dbe1a2698a5bd017f9abe076253e950f9bc9a5d78e879e4cf
    57 rdf:type schema:PropertyValue
    58 N9298e5fd00d448fc93bcabf26a0115cf schema:name dimensions_id
    59 schema:value pub.1110203806
    60 rdf:type schema:PropertyValue
    61 N94b4e461c52847c08363c40833dba1e1 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Ne0a4e3269259486e8e95ce62ffe20bf3 rdf:first sg:person.014177120211.64
    64 rdf:rest N6d8fb063f5f34762bbac111c09d1c635
    65 Ne13560721f614104a2fcf0878cac36c7 schema:name Army Aviation Institute, 101123, Beijing, People’s Republic of China
    66 rdf:type schema:Organization
    67 Nfed5661a2574446ea6a799514b1db92d rdf:first sg:person.011257331411.41
    68 rdf:rest rdf:nil
    69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Engineering
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Manufacturing Engineering
    74 rdf:type schema:DefinedTerm
    75 sg:grant.3959750 http://pending.schema.org/fundedItem sg:pub.10.1007/s41871-018-0031-x
    76 rdf:type schema:MonetaryGrant
    77 sg:journal.1301675 schema:issn 2520-811X
    78 2520-8128
    79 schema:name Nanomanufacturing and Metrology
    80 rdf:type schema:Periodical
    81 sg:person.010350451531.11 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
    82 schema:familyName Teng
    83 schema:givenName Xiangyu
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350451531.11
    85 rdf:type schema:Person
    86 sg:person.010667121453.35 schema:affiliation Ne13560721f614104a2fcf0878cac36c7
    87 schema:familyName Yang
    88 schema:givenName Kai
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010667121453.35
    90 rdf:type schema:Person
    91 sg:person.011257331411.41 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
    92 schema:familyName Huo
    93 schema:givenName Dehong
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257331411.41
    95 rdf:type schema:Person
    96 sg:person.014177120211.64 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    97 schema:familyName Chen
    98 schema:givenName Wanqun
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177120211.64
    100 rdf:type schema:Person
    101 sg:person.07611511044.40 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
    102 schema:familyName Zheng
    103 schema:givenName Lu
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611511044.40
    105 rdf:type schema:Person
    106 sg:pub.10.1007/978-1-84800-213-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014732337
    107 https://doi.org/10.1007/978-1-84800-213-5
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00170-006-0761-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678983
    110 https://doi.org/10.1007/s00170-006-0761-6
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s00170-010-2991-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025001199
    113 https://doi.org/10.1007/s00170-010-2991-x
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s00170-011-3473-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034726180
    116 https://doi.org/10.1007/s00170-011-3473-5
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00170-011-3882-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042763878
    119 https://doi.org/10.1007/s00170-011-3882-5
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00170-016-8977-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049604493
    122 https://doi.org/10.1007/s00170-016-8977-6
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s40436-015-0115-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006599929
    125 https://doi.org/10.1007/s40436-015-0115-4
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s40799-016-0021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049179586
    128 https://doi.org/10.1007/s40799-016-0021-0
    129 rdf:type schema:CreativeWork
    130 https://app.dimensions.ai/details/publication/pub.1014732337 schema:CreativeWork
    131 https://doi.org/10.1016/j.ijmachtools.2005.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010097667
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.ijmachtools.2006.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043107045
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.ijmachtools.2009.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027874144
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.jmatprotec.2010.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033453186
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.mfglet.2018.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101316063
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.precisioneng.2007.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052005465
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1080/10426914.2016.1198029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021660382
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1080/10426914.2017.1291958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083778253
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1088/1361-6439/aaa06f schema:sameAs https://app.dimensions.ai/details/publication/pub.1099773190
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1088/1361-665x/aa71f0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085474956
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1177/0954405415586549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063883274
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1177/0954406218792360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106191041
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.1006.7 schema:alternateName Newcastle University
    156 schema:name Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    157 rdf:type schema:Organization
    158 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
    159 schema:name Centre for Precision Engineering, Harbin Institute of Technology, 150001, Harbin, People’s Republic of China
    160 Mechanical Engineering, School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...