A Finite Element Modeling Prediction in High Precision Milling Process of Aluminum 6082-T6 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. Davoudinejad, S. Doagou-Rad, G. Tosello

ABSTRACT

This study investigates micro-end-milling machining prediction using three-dimensional finite element modeling method. The FE model was developed for contouring up-milling operation for prediction of chip flow, burr formation, cutting temperature and cutting forces in an integrated model. The flow stress behavior of the workpiece was modeled by the Johnson–Cook material constitutive model. Different cutting conditions were simulated to consider the effect of the process variables that might be difficult or impossible to follow in the physical experiments at this scale. The tool was precisely 3D modeled to describe the detailed geometry of the tool which is one of the critical aspects of the model and is characteristic of the cutter tool micro-geometry design. Furthermore, the tool deflection was studied using a FE model under the experimental cutting forces measured in the different cutting conditions in order to consider the micro-end-mill deviation from the nominal position. 3D simulations of chip flow and temperature distribution are compared in various cutting conditions. The results of the burr formation, temperature distribution and cutting forces in three directions predictions are compared against the experiments. Simulations were able to predict the burr height with an accuracy between 1 and 4 µm depending on cutting parameters settings. The results of this study are beneficial to comprehend the micro-end-milling chip and burr formation to increase the machinability of the workpiece and to understand the influence of cutting parameter in order to prevent several experimental tests prior to the final machining. More... »

PAGES

1-12

References to SciGraph publications

  • 2017-10. Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation in PRODUCTION ENGINEERING
  • 2017-06. 3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of aluminum 6061-T6 in FRONTIERS OF MECHANICAL ENGINEERING
  • 2017-11. Investigation of the micro-milling process of thin-wall features of aluminum alloy 1100 in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2014-11. Effect of cutting edge preparation on tool performance in hard-turning of DF-3 tool steel with ceramic tools in JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
  • 2018-06. Investigation on Innovative Dynamic Cutting Force Modelling in Micro-milling and Its Experimental Validation in NANOMANUFACTURING AND METROLOGY
  • 2012-10. Research on the modeling of burr formation process in micro-ball end milling operation on Ti–6Al–4V in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2010-12. An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2011-02. Tool edge radius effect on cutting temperature in micro-end-milling process in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2017-10. Influence of the worn tool affected by built-up edge (BUE) on micro end-milling process performance: A 3D finite element modeling investigation in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2016-06. Influence of tool wear on machining forces and tool deflections during micro milling in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41871-018-0026-7

    DOI

    http://dx.doi.org/10.1007/s41871-018-0026-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107924881


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technical University of Denmark", 
              "id": "https://www.grid.ac/institutes/grid.5170.3", 
              "name": [
                "Department of Mechanical Engineering, Technical University of Denmark, Building 427A, Produktionstorvet, 2800, Kgs. Lyngby, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Davoudinejad", 
            "givenName": "A.", 
            "id": "sg:person.011752711245.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011752711245.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Denmark", 
              "id": "https://www.grid.ac/institutes/grid.5170.3", 
              "name": [
                "Department of Mechanical Engineering, Technical University of Denmark, Building 427A, Produktionstorvet, 2800, Kgs. Lyngby, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Doagou-Rad", 
            "givenName": "S.", 
            "id": "sg:person.012215601033.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012215601033.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Denmark", 
              "id": "https://www.grid.ac/institutes/grid.5170.3", 
              "name": [
                "Department of Mechanical Engineering, Technical University of Denmark, Building 427A, Produktionstorvet, 2800, Kgs. Lyngby, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tosello", 
            "givenName": "G.", 
            "id": "sg:person.015615640355.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015615640355.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00170-010-2685-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004625570", 
              "https://doi.org/10.1007/s00170-010-2685-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-010-2685-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004625570", 
              "https://doi.org/10.1007/s00170-010-2685-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10940349908945691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005370896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2012.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006868577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2009.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007083726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2013.06.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007217736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2013.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012979651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2015.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018232418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2013.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020842575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-010-2795-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021262907", 
              "https://doi.org/10.1007/s00170-010-2795-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(01)01228-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029287182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3865-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030624736", 
              "https://doi.org/10.1007/s00170-011-3865-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2011.03.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031945956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.wear.2013.01.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034830289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7744-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035627386", 
              "https://doi.org/10.1007/s00170-015-7744-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12206-014-1039-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042351596", 
              "https://doi.org/10.1007/s12206-014-1039-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2016.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045595250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10426914.2015.1117629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053101353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmecsci.2017.02.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083887562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11465-017-0421-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084031664", 
              "https://doi.org/10.1007/s11465-017-0421-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2017.02.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084103097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2017.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084103099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2017.03.336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085717097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/mi8060187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086039125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0514-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090368061", 
              "https://doi.org/10.1007/s00170-017-0514-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0514-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090368061", 
              "https://doi.org/10.1007/s00170-017-0514-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11740-017-0761-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091211841", 
              "https://doi.org/10.1007/s11740-017-0761-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11740-017-0761-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091211841", 
              "https://doi.org/10.1007/s11740-017-0761-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-017-0157-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092118764", 
              "https://doi.org/10.1007/s12541-017-0157-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/met7100426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092224023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mfglet.2018.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101316063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mfglet.2018.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101316063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41871-018-0008-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101826754", 
              "https://doi.org/10.1007/s41871-018-0008-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41871-018-0008-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101826754", 
              "https://doi.org/10.1007/s41871-018-0008-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41871-018-0008-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101826754", 
              "https://doi.org/10.1007/s41871-018-0008-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1757-899x/346/1/012058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103754452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/met8060394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104285190"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "This study investigates micro-end-milling machining prediction using three-dimensional finite element modeling method. The FE model was developed for contouring up-milling operation for prediction of chip flow, burr formation, cutting temperature and cutting forces in an integrated model. The flow stress behavior of the workpiece was modeled by the Johnson\u2013Cook material constitutive model. Different cutting conditions were simulated to consider the effect of the process variables that might be difficult or impossible to follow in the physical experiments at this scale. The tool was precisely 3D modeled to describe the detailed geometry of the tool which is one of the critical aspects of the model and is characteristic of the cutter tool micro-geometry design. Furthermore, the tool deflection was studied using a FE model under the experimental cutting forces measured in the different cutting conditions in order to consider the micro-end-mill deviation from the nominal position. 3D simulations of chip flow and temperature distribution are compared in various cutting conditions. The results of the burr formation, temperature distribution and cutting forces in three directions predictions are compared against the experiments. Simulations were able to predict the burr height with an accuracy between 1 and 4 \u00b5m depending on cutting parameters settings. The results of this study are beneficial to comprehend the micro-end-milling chip and burr formation to increase the machinability of the workpiece and to understand the influence of cutting parameter in order to prevent several experimental tests prior to the final machining.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s41871-018-0026-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3799058", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1301675", 
            "issn": [
              "2520-811X", 
              "2520-8128"
            ], 
            "name": "Nanomanufacturing and Metrology", 
            "type": "Periodical"
          }
        ], 
        "name": "A Finite Element Modeling Prediction in High Precision Milling Process of Aluminum 6082-T6", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a051d9fddefb8df0d8184c09019307a6b1273d6e7b00b12683f8f72dc089de15"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41871-018-0026-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107924881"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41871-018-0026-7", 
          "https://app.dimensions.ai/details/publication/pub.1107924881"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000573.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs41871-018-0026-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0026-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0026-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0026-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41871-018-0026-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      21 PREDICATES      56 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41871-018-0026-7 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 schema:author N6b6b43c2ed2b4b32bcbc6b5f60408475
    4 schema:citation sg:pub.10.1007/s00170-010-2685-4
    5 sg:pub.10.1007/s00170-010-2795-z
    6 sg:pub.10.1007/s00170-011-3865-6
    7 sg:pub.10.1007/s00170-015-7744-4
    8 sg:pub.10.1007/s00170-017-0514-8
    9 sg:pub.10.1007/s11465-017-0421-6
    10 sg:pub.10.1007/s11740-017-0761-4
    11 sg:pub.10.1007/s12206-014-1039-9
    12 sg:pub.10.1007/s12541-017-0157-6
    13 sg:pub.10.1007/s41871-018-0008-9
    14 https://doi.org/10.1016/j.cirp.2009.09.004
    15 https://doi.org/10.1016/j.cirp.2013.05.006
    16 https://doi.org/10.1016/j.ijmecsci.2017.02.014
    17 https://doi.org/10.1016/j.jmatprotec.2013.05.019
    18 https://doi.org/10.1016/j.jmatprotec.2015.02.019
    19 https://doi.org/10.1016/j.matdes.2011.03.049
    20 https://doi.org/10.1016/j.mfglet.2018.02.015
    21 https://doi.org/10.1016/j.precisioneng.2016.08.004
    22 https://doi.org/10.1016/j.precisioneng.2017.02.017
    23 https://doi.org/10.1016/j.precisioneng.2017.02.019
    24 https://doi.org/10.1016/j.procir.2012.05.019
    25 https://doi.org/10.1016/j.procir.2013.06.071
    26 https://doi.org/10.1016/j.procir.2017.03.336
    27 https://doi.org/10.1016/j.wear.2013.01.103
    28 https://doi.org/10.1016/s0924-0136(01)01228-6
    29 https://doi.org/10.1080/10426914.2015.1117629
    30 https://doi.org/10.1080/10940349908945691
    31 https://doi.org/10.1088/1757-899x/346/1/012058
    32 https://doi.org/10.3390/met7100426
    33 https://doi.org/10.3390/met8060394
    34 https://doi.org/10.3390/mi8060187
    35 schema:datePublished 2018-12
    36 schema:datePublishedReg 2018-12-01
    37 schema:description This study investigates micro-end-milling machining prediction using three-dimensional finite element modeling method. The FE model was developed for contouring up-milling operation for prediction of chip flow, burr formation, cutting temperature and cutting forces in an integrated model. The flow stress behavior of the workpiece was modeled by the Johnson–Cook material constitutive model. Different cutting conditions were simulated to consider the effect of the process variables that might be difficult or impossible to follow in the physical experiments at this scale. The tool was precisely 3D modeled to describe the detailed geometry of the tool which is one of the critical aspects of the model and is characteristic of the cutter tool micro-geometry design. Furthermore, the tool deflection was studied using a FE model under the experimental cutting forces measured in the different cutting conditions in order to consider the micro-end-mill deviation from the nominal position. 3D simulations of chip flow and temperature distribution are compared in various cutting conditions. The results of the burr formation, temperature distribution and cutting forces in three directions predictions are compared against the experiments. Simulations were able to predict the burr height with an accuracy between 1 and 4 µm depending on cutting parameters settings. The results of this study are beneficial to comprehend the micro-end-milling chip and burr formation to increase the machinability of the workpiece and to understand the influence of cutting parameter in order to prevent several experimental tests prior to the final machining.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf sg:journal.1301675
    42 schema:name A Finite Element Modeling Prediction in High Precision Milling Process of Aluminum 6082-T6
    43 schema:pagination 1-12
    44 schema:productId N34fa843fb71e453da4d18863e9c72050
    45 N5419846e22484579987f4a8906496f45
    46 N70593d91c0a44621a85509b777e3e76f
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107924881
    48 https://doi.org/10.1007/s41871-018-0026-7
    49 schema:sdDatePublished 2019-04-10T14:19
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N3f65c37ff6a5481da5709942c83776af
    52 schema:url https://link.springer.com/10.1007%2Fs41871-018-0026-7
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N06275e33a1424e8cabb6401b92642fc8 rdf:first sg:person.015615640355.98
    57 rdf:rest rdf:nil
    58 N34fa843fb71e453da4d18863e9c72050 schema:name readcube_id
    59 schema:value a051d9fddefb8df0d8184c09019307a6b1273d6e7b00b12683f8f72dc089de15
    60 rdf:type schema:PropertyValue
    61 N3f65c37ff6a5481da5709942c83776af schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 N5419846e22484579987f4a8906496f45 schema:name dimensions_id
    64 schema:value pub.1107924881
    65 rdf:type schema:PropertyValue
    66 N6b6b43c2ed2b4b32bcbc6b5f60408475 rdf:first sg:person.011752711245.38
    67 rdf:rest N7d218c7486dd42dfa6c946634822f4c2
    68 N70593d91c0a44621a85509b777e3e76f schema:name doi
    69 schema:value 10.1007/s41871-018-0026-7
    70 rdf:type schema:PropertyValue
    71 N7d218c7486dd42dfa6c946634822f4c2 rdf:first sg:person.012215601033.24
    72 rdf:rest N06275e33a1424e8cabb6401b92642fc8
    73 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Earth Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Geology
    78 rdf:type schema:DefinedTerm
    79 sg:grant.3799058 http://pending.schema.org/fundedItem sg:pub.10.1007/s41871-018-0026-7
    80 rdf:type schema:MonetaryGrant
    81 sg:journal.1301675 schema:issn 2520-811X
    82 2520-8128
    83 schema:name Nanomanufacturing and Metrology
    84 rdf:type schema:Periodical
    85 sg:person.011752711245.38 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
    86 schema:familyName Davoudinejad
    87 schema:givenName A.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011752711245.38
    89 rdf:type schema:Person
    90 sg:person.012215601033.24 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
    91 schema:familyName Doagou-Rad
    92 schema:givenName S.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012215601033.24
    94 rdf:type schema:Person
    95 sg:person.015615640355.98 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
    96 schema:familyName Tosello
    97 schema:givenName G.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015615640355.98
    99 rdf:type schema:Person
    100 sg:pub.10.1007/s00170-010-2685-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004625570
    101 https://doi.org/10.1007/s00170-010-2685-4
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s00170-010-2795-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021262907
    104 https://doi.org/10.1007/s00170-010-2795-z
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s00170-011-3865-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030624736
    107 https://doi.org/10.1007/s00170-011-3865-6
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00170-015-7744-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035627386
    110 https://doi.org/10.1007/s00170-015-7744-4
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s00170-017-0514-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090368061
    113 https://doi.org/10.1007/s00170-017-0514-8
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s11465-017-0421-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084031664
    116 https://doi.org/10.1007/s11465-017-0421-6
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s11740-017-0761-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091211841
    119 https://doi.org/10.1007/s11740-017-0761-4
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s12206-014-1039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042351596
    122 https://doi.org/10.1007/s12206-014-1039-9
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s12541-017-0157-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092118764
    125 https://doi.org/10.1007/s12541-017-0157-6
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s41871-018-0008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101826754
    128 https://doi.org/10.1007/s41871-018-0008-9
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.cirp.2009.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007083726
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.cirp.2013.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020842575
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.ijmecsci.2017.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083887562
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.jmatprotec.2013.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012979651
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.jmatprotec.2015.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018232418
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.matdes.2011.03.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031945956
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.mfglet.2018.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101316063
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.precisioneng.2016.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045595250
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.precisioneng.2017.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084103097
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.precisioneng.2017.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084103099
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.procir.2012.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006868577
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.procir.2013.06.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007217736
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.procir.2017.03.336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085717097
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.wear.2013.01.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034830289
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/s0924-0136(01)01228-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029287182
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1080/10426914.2015.1117629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053101353
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1080/10940349908945691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005370896
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1088/1757-899x/346/1/012058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103754452
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.3390/met7100426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092224023
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.3390/met8060394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104285190
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.3390/mi8060187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086039125
    171 rdf:type schema:CreativeWork
    172 https://www.grid.ac/institutes/grid.5170.3 schema:alternateName Technical University of Denmark
    173 schema:name Department of Mechanical Engineering, Technical University of Denmark, Building 427A, Produktionstorvet, 2800, Kgs. Lyngby, Denmark
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...