Change of Ionization Mechanism in the Welding Fume Plasma from Gas Metal Arc Welding View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05-14

AUTHORS

V. I. Vishnyakov, S. V. Kozytskyi, A. A. Ennan

ABSTRACT

Ionization mechanisms in welding fumes from gas metal arc welding are studied. Welding fume is a low-temperature thermal plasma with ultra-violet radiation as external ionization source, where ionization occurs via gas particles’ collisions and photoionization. The plasma cooling causes heterogeneous ion-induced nucleation, which provides large number of nuclei. Nucleus number density is much greater than equilibrium number density of charge carriers. Electrons are captured by nuclei. As a result, the dust–ion plasma is formed, in which electron number density is much less than ion and nucleus number densities and it can be neglected. The surface atom ionization and ion recombination becomes predominant processes. Calculation of the plasma component number densities are presented as their evolution during welding fume cooling. More... »

PAGES

49-53

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4

DOI

http://dx.doi.org/10.1007/s41810-019-00043-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1114222369


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vishnyakov", 
        "givenName": "V. I.", 
        "id": "sg:person.015452741612.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452741612.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University \u201cOdessa Maritime Academy\u201d, 8 Didrikhson st., 65029, Odessa, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.440557.7", 
          "name": [
            "National University \u201cOdessa Maritime Academy\u201d, 8 Didrikhson st., 65029, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozytskyi", 
        "givenName": "S. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ennan", 
        "givenName": "A. A.", 
        "id": "sg:person.07436657062.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436657062.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-01525-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027163355", 
          "https://doi.org/10.1007/978-3-662-01525-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/168703a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049067969", 
          "https://doi.org/10.1038/168703a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41810-018-0028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104605199", 
          "https://doi.org/10.1007/s41810-018-0028-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05-14", 
    "datePublishedReg": "2019-05-14", 
    "description": "Ionization mechanisms in welding fumes from gas metal arc welding are studied. Welding fume is a low-temperature thermal plasma with ultra-violet radiation as external ionization source, where ionization occurs via gas particles\u2019 collisions and photoionization. The plasma cooling causes heterogeneous ion-induced nucleation, which provides large number of nuclei. Nucleus number density is much greater than equilibrium number density of charge carriers. Electrons are captured by nuclei. As a result, the dust\u2013ion plasma is formed, in which electron number density is much less than ion and nucleus number densities and it can be neglected. The surface atom ionization and ion recombination becomes predominant processes. Calculation of the plasma component number densities are presented as their evolution during welding fume cooling.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41810-019-00043-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1290403", 
        "issn": [
          "2510-375X", 
          "2510-3768"
        ], 
        "name": "Aerosol Science and Engineering", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "number density", 
      "ionization mechanism", 
      "low-temperature thermal plasma", 
      "gas metal arc welding", 
      "nuclei number density", 
      "dust\u2013ion plasma", 
      "electron number density", 
      "equilibrium number density", 
      "metal arc welding", 
      "external ionization source", 
      "ion-induced nucleation", 
      "atom ionization", 
      "plasma cooling", 
      "arc welding", 
      "ion recombination", 
      "thermal plasma", 
      "ultra-violet radiation", 
      "gas particles", 
      "charge carriers", 
      "ionization source", 
      "ionization", 
      "plasma", 
      "density", 
      "welding", 
      "photoionization", 
      "welding fumes", 
      "electrons", 
      "nucleus", 
      "collisions", 
      "fume", 
      "radiation", 
      "cooling", 
      "ions", 
      "calculations", 
      "particles", 
      "predominant process", 
      "recombination", 
      "nucleation", 
      "carriers", 
      "source", 
      "evolution", 
      "large number", 
      "process", 
      "mechanism", 
      "results", 
      "number", 
      "changes"
    ], 
    "name": "Change of Ionization Mechanism in the Welding Fume Plasma from Gas Metal Arc Welding", 
    "pagination": "49-53", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1114222369"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41810-019-00043-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41810-019-00043-4", 
      "https://app.dimensions.ai/details/publication/pub.1114222369"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_798.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41810-019-00043-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      75 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41810-019-00043-4 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N0d119123e95b4dcd9206f6bc39f8f803
4 schema:citation sg:pub.10.1007/978-3-662-01525-4
5 sg:pub.10.1007/s41810-018-0028-2
6 sg:pub.10.1038/168703a0
7 schema:datePublished 2019-05-14
8 schema:datePublishedReg 2019-05-14
9 schema:description Ionization mechanisms in welding fumes from gas metal arc welding are studied. Welding fume is a low-temperature thermal plasma with ultra-violet radiation as external ionization source, where ionization occurs via gas particles’ collisions and photoionization. The plasma cooling causes heterogeneous ion-induced nucleation, which provides large number of nuclei. Nucleus number density is much greater than equilibrium number density of charge carriers. Electrons are captured by nuclei. As a result, the dust–ion plasma is formed, in which electron number density is much less than ion and nucleus number densities and it can be neglected. The surface atom ionization and ion recombination becomes predominant processes. Calculation of the plasma component number densities are presented as their evolution during welding fume cooling.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N2d72f7af10c14bb0896e8922950b1059
14 Nbbe4cf0e6bd64dbea01bb68752eb6de8
15 sg:journal.1290403
16 schema:keywords arc welding
17 atom ionization
18 calculations
19 carriers
20 changes
21 charge carriers
22 collisions
23 cooling
24 density
25 dust–ion plasma
26 electron number density
27 electrons
28 equilibrium number density
29 evolution
30 external ionization source
31 fume
32 gas metal arc welding
33 gas particles
34 ion recombination
35 ion-induced nucleation
36 ionization
37 ionization mechanism
38 ionization source
39 ions
40 large number
41 low-temperature thermal plasma
42 mechanism
43 metal arc welding
44 nucleation
45 nuclei number density
46 nucleus
47 number
48 number density
49 particles
50 photoionization
51 plasma
52 plasma cooling
53 predominant process
54 process
55 radiation
56 recombination
57 results
58 source
59 thermal plasma
60 ultra-violet radiation
61 welding
62 welding fumes
63 schema:name Change of Ionization Mechanism in the Welding Fume Plasma from Gas Metal Arc Welding
64 schema:pagination 49-53
65 schema:productId N33dc5cde30704b72a692043b6371334c
66 Nbf73acfc1242411793fb60c22c8f865b
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114222369
68 https://doi.org/10.1007/s41810-019-00043-4
69 schema:sdDatePublished 2022-06-01T22:19
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Na4d648cd1ed941ca841afa2a13048cfa
72 schema:url https://doi.org/10.1007/s41810-019-00043-4
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N0d119123e95b4dcd9206f6bc39f8f803 rdf:first sg:person.015452741612.37
77 rdf:rest Nd6470ac1dbb74b2991e0abd898660dcc
78 N141234942d9f4f15bde80bf27244579c rdf:first sg:person.07436657062.27
79 rdf:rest rdf:nil
80 N2d72f7af10c14bb0896e8922950b1059 schema:volumeNumber 3
81 rdf:type schema:PublicationVolume
82 N33dc5cde30704b72a692043b6371334c schema:name dimensions_id
83 schema:value pub.1114222369
84 rdf:type schema:PropertyValue
85 Na4d648cd1ed941ca841afa2a13048cfa schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nbbe4cf0e6bd64dbea01bb68752eb6de8 schema:issueNumber 2
88 rdf:type schema:PublicationIssue
89 Nbf73acfc1242411793fb60c22c8f865b schema:name doi
90 schema:value 10.1007/s41810-019-00043-4
91 rdf:type schema:PropertyValue
92 Nd6470ac1dbb74b2991e0abd898660dcc rdf:first Ne993a915fa1f4ed28e810dd30d64386d
93 rdf:rest N141234942d9f4f15bde80bf27244579c
94 Ne993a915fa1f4ed28e810dd30d64386d schema:affiliation grid-institutes:grid.440557.7
95 schema:familyName Kozytskyi
96 schema:givenName S. V.
97 rdf:type schema:Person
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
102 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
103 rdf:type schema:DefinedTerm
104 sg:journal.1290403 schema:issn 2510-375X
105 2510-3768
106 schema:name Aerosol Science and Engineering
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.015452741612.37 schema:affiliation grid-institutes:None
110 schema:familyName Vishnyakov
111 schema:givenName V. I.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452741612.37
113 rdf:type schema:Person
114 sg:person.07436657062.27 schema:affiliation grid-institutes:None
115 schema:familyName Ennan
116 schema:givenName A. A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436657062.27
118 rdf:type schema:Person
119 sg:pub.10.1007/978-3-662-01525-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027163355
120 https://doi.org/10.1007/978-3-662-01525-4
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s41810-018-0028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104605199
123 https://doi.org/10.1007/s41810-018-0028-2
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/168703a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049067969
126 https://doi.org/10.1038/168703a0
127 rdf:type schema:CreativeWork
128 grid-institutes:None schema:alternateName Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine
129 schema:name Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine
130 rdf:type schema:Organization
131 grid-institutes:grid.440557.7 schema:alternateName National University “Odessa Maritime Academy”, 8 Didrikhson st., 65029, Odessa, Ukraine
132 schema:name National University “Odessa Maritime Academy”, 8 Didrikhson st., 65029, Odessa, Ukraine
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...