Ontology type: schema:ScholarlyArticle
2019-05-14
AUTHORSV. I. Vishnyakov, S. V. Kozytskyi, A. A. Ennan
ABSTRACTIonization mechanisms in welding fumes from gas metal arc welding are studied. Welding fume is a low-temperature thermal plasma with ultra-violet radiation as external ionization source, where ionization occurs via gas particles’ collisions and photoionization. The plasma cooling causes heterogeneous ion-induced nucleation, which provides large number of nuclei. Nucleus number density is much greater than equilibrium number density of charge carriers. Electrons are captured by nuclei. As a result, the dust–ion plasma is formed, in which electron number density is much less than ion and nucleus number densities and it can be neglected. The surface atom ionization and ion recombination becomes predominant processes. Calculation of the plasma component number densities are presented as their evolution during welding fume cooling. More... »
PAGES49-53
http://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4
DOIhttp://dx.doi.org/10.1007/s41810-019-00043-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1114222369
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine"
],
"type": "Organization"
},
"familyName": "Vishnyakov",
"givenName": "V. I.",
"id": "sg:person.015452741612.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452741612.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National University \u201cOdessa Maritime Academy\u201d, 8 Didrikhson st., 65029, Odessa, Ukraine",
"id": "http://www.grid.ac/institutes/grid.440557.7",
"name": [
"National University \u201cOdessa Maritime Academy\u201d, 8 Didrikhson st., 65029, Odessa, Ukraine"
],
"type": "Organization"
},
"familyName": "Kozytskyi",
"givenName": "S. V.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine"
],
"type": "Organization"
},
"familyName": "Ennan",
"givenName": "A. A.",
"id": "sg:person.07436657062.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436657062.27"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s41810-018-0028-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104605199",
"https://doi.org/10.1007/s41810-018-0028-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/168703a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049067969",
"https://doi.org/10.1038/168703a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-01525-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027163355",
"https://doi.org/10.1007/978-3-662-01525-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-05-14",
"datePublishedReg": "2019-05-14",
"description": "Ionization mechanisms in welding fumes from gas metal arc welding are studied. Welding fume is a low-temperature thermal plasma with ultra-violet radiation as external ionization source, where ionization occurs via gas particles\u2019 collisions and photoionization. The plasma cooling causes heterogeneous ion-induced nucleation, which provides large number of nuclei. Nucleus number density is much greater than equilibrium number density of charge carriers. Electrons are captured by nuclei. As a result, the dust\u2013ion plasma is formed, in which electron number density is much less than ion and nucleus number densities and it can be neglected. The surface atom ionization and ion recombination becomes predominant processes. Calculation of the plasma component number densities are presented as their evolution during welding fume cooling.",
"genre": "article",
"id": "sg:pub.10.1007/s41810-019-00043-4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1290403",
"issn": [
"2510-375X",
"2510-3768"
],
"name": "Aerosol Science and Engineering",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"keywords": [
"number density",
"ionization mechanism",
"low-temperature thermal plasma",
"gas metal arc welding",
"nuclei number density",
"dust\u2013ion plasma",
"electron number density",
"equilibrium number density",
"metal arc welding",
"external ionization source",
"ion-induced nucleation",
"atom ionization",
"plasma cooling",
"arc welding",
"ion recombination",
"thermal plasma",
"ultra-violet radiation",
"gas particles",
"charge carriers",
"ionization source",
"ionization",
"plasma",
"density",
"welding",
"photoionization",
"welding fumes",
"electrons",
"nucleus",
"collisions",
"fume",
"radiation",
"cooling",
"ions",
"calculations",
"particles",
"predominant process",
"recombination",
"nucleation",
"carriers",
"source",
"evolution",
"large number",
"process",
"mechanism",
"results",
"number",
"changes"
],
"name": "Change of Ionization Mechanism in the Welding Fume Plasma from Gas Metal Arc Welding",
"pagination": "49-53",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1114222369"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s41810-019-00043-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s41810-019-00043-4",
"https://app.dimensions.ai/details/publication/pub.1114222369"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_825.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s41810-019-00043-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41810-019-00043-4'
This table displays all metadata directly associated to this object as RDF triples.
133 TRIPLES
22 PREDICATES
75 URIs
64 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s41810-019-00043-4 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | Naf8f1219786f4786bd849deb57188ab0 |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-662-01525-4 |
5 | ″ | ″ | sg:pub.10.1007/s41810-018-0028-2 |
6 | ″ | ″ | sg:pub.10.1038/168703a0 |
7 | ″ | schema:datePublished | 2019-05-14 |
8 | ″ | schema:datePublishedReg | 2019-05-14 |
9 | ″ | schema:description | Ionization mechanisms in welding fumes from gas metal arc welding are studied. Welding fume is a low-temperature thermal plasma with ultra-violet radiation as external ionization source, where ionization occurs via gas particles’ collisions and photoionization. The plasma cooling causes heterogeneous ion-induced nucleation, which provides large number of nuclei. Nucleus number density is much greater than equilibrium number density of charge carriers. Electrons are captured by nuclei. As a result, the dust–ion plasma is formed, in which electron number density is much less than ion and nucleus number densities and it can be neglected. The surface atom ionization and ion recombination becomes predominant processes. Calculation of the plasma component number densities are presented as their evolution during welding fume cooling. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N64721c05804c4765b7a5b30861c94074 |
14 | ″ | ″ | Na3fa4cd251de41ddb23add260305ec4a |
15 | ″ | ″ | sg:journal.1290403 |
16 | ″ | schema:keywords | arc welding |
17 | ″ | ″ | atom ionization |
18 | ″ | ″ | calculations |
19 | ″ | ″ | carriers |
20 | ″ | ″ | changes |
21 | ″ | ″ | charge carriers |
22 | ″ | ″ | collisions |
23 | ″ | ″ | cooling |
24 | ″ | ″ | density |
25 | ″ | ″ | dust–ion plasma |
26 | ″ | ″ | electron number density |
27 | ″ | ″ | electrons |
28 | ″ | ″ | equilibrium number density |
29 | ″ | ″ | evolution |
30 | ″ | ″ | external ionization source |
31 | ″ | ″ | fume |
32 | ″ | ″ | gas metal arc welding |
33 | ″ | ″ | gas particles |
34 | ″ | ″ | ion recombination |
35 | ″ | ″ | ion-induced nucleation |
36 | ″ | ″ | ionization |
37 | ″ | ″ | ionization mechanism |
38 | ″ | ″ | ionization source |
39 | ″ | ″ | ions |
40 | ″ | ″ | large number |
41 | ″ | ″ | low-temperature thermal plasma |
42 | ″ | ″ | mechanism |
43 | ″ | ″ | metal arc welding |
44 | ″ | ″ | nucleation |
45 | ″ | ″ | nuclei number density |
46 | ″ | ″ | nucleus |
47 | ″ | ″ | number |
48 | ″ | ″ | number density |
49 | ″ | ″ | particles |
50 | ″ | ″ | photoionization |
51 | ″ | ″ | plasma |
52 | ″ | ″ | plasma cooling |
53 | ″ | ″ | predominant process |
54 | ″ | ″ | process |
55 | ″ | ″ | radiation |
56 | ″ | ″ | recombination |
57 | ″ | ″ | results |
58 | ″ | ″ | source |
59 | ″ | ″ | thermal plasma |
60 | ″ | ″ | ultra-violet radiation |
61 | ″ | ″ | welding |
62 | ″ | ″ | welding fumes |
63 | ″ | schema:name | Change of Ionization Mechanism in the Welding Fume Plasma from Gas Metal Arc Welding |
64 | ″ | schema:pagination | 49-53 |
65 | ″ | schema:productId | N071bb91cfe004e48a6720a5ec25d43fd |
66 | ″ | ″ | Na93ee875667d4a68b07915ffe7ecefef |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1114222369 |
68 | ″ | ″ | https://doi.org/10.1007/s41810-019-00043-4 |
69 | ″ | schema:sdDatePublished | 2022-05-20T07:36 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | Na266d031bf56492c8e2821911be16f95 |
72 | ″ | schema:url | https://doi.org/10.1007/s41810-019-00043-4 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | articles |
75 | ″ | rdf:type | schema:ScholarlyArticle |
76 | N0521d1838e5048fc877fda6bb7adf211 | rdf:first | N66685199346342f799bb13204f902dd8 |
77 | ″ | rdf:rest | Nb66109e262b34849a7a4de2cd38bff97 |
78 | N071bb91cfe004e48a6720a5ec25d43fd | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1114222369 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N64721c05804c4765b7a5b30861c94074 | schema:issueNumber | 2 |
82 | ″ | rdf:type | schema:PublicationIssue |
83 | N66685199346342f799bb13204f902dd8 | schema:affiliation | grid-institutes:grid.440557.7 |
84 | ″ | schema:familyName | Kozytskyi |
85 | ″ | schema:givenName | S. V. |
86 | ″ | rdf:type | schema:Person |
87 | Na266d031bf56492c8e2821911be16f95 | schema:name | Springer Nature - SN SciGraph project |
88 | ″ | rdf:type | schema:Organization |
89 | Na3fa4cd251de41ddb23add260305ec4a | schema:volumeNumber | 3 |
90 | ″ | rdf:type | schema:PublicationVolume |
91 | Na93ee875667d4a68b07915ffe7ecefef | schema:name | doi |
92 | ″ | schema:value | 10.1007/s41810-019-00043-4 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | Naf8f1219786f4786bd849deb57188ab0 | rdf:first | sg:person.015452741612.37 |
95 | ″ | rdf:rest | N0521d1838e5048fc877fda6bb7adf211 |
96 | Nb66109e262b34849a7a4de2cd38bff97 | rdf:first | sg:person.07436657062.27 |
97 | ″ | rdf:rest | rdf:nil |
98 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Physical Sciences |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | sg:journal.1290403 | schema:issn | 2510-375X |
105 | ″ | ″ | 2510-3768 |
106 | ″ | schema:name | Aerosol Science and Engineering |
107 | ″ | schema:publisher | Springer Nature |
108 | ″ | rdf:type | schema:Periodical |
109 | sg:person.015452741612.37 | schema:affiliation | grid-institutes:None |
110 | ″ | schema:familyName | Vishnyakov |
111 | ″ | schema:givenName | V. I. |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452741612.37 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.07436657062.27 | schema:affiliation | grid-institutes:None |
115 | ″ | schema:familyName | Ennan |
116 | ″ | schema:givenName | A. A. |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436657062.27 |
118 | ″ | rdf:type | schema:Person |
119 | sg:pub.10.1007/978-3-662-01525-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027163355 |
120 | ″ | ″ | https://doi.org/10.1007/978-3-662-01525-4 |
121 | ″ | rdf:type | schema:CreativeWork |
122 | sg:pub.10.1007/s41810-018-0028-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1104605199 |
123 | ″ | ″ | https://doi.org/10.1007/s41810-018-0028-2 |
124 | ″ | rdf:type | schema:CreativeWork |
125 | sg:pub.10.1038/168703a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049067969 |
126 | ″ | ″ | https://doi.org/10.1038/168703a0 |
127 | ″ | rdf:type | schema:CreativeWork |
128 | grid-institutes:None | schema:alternateName | Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine |
129 | ″ | schema:name | Physical-Chemical Institute for Environment and Human Protection, 3 Preobrazhenska st., 65082, Odessa, Ukraine |
130 | ″ | rdf:type | schema:Organization |
131 | grid-institutes:grid.440557.7 | schema:alternateName | National University “Odessa Maritime Academy”, 8 Didrikhson st., 65029, Odessa, Ukraine |
132 | ″ | schema:name | National University “Odessa Maritime Academy”, 8 Didrikhson st., 65029, Odessa, Ukraine |
133 | ″ | rdf:type | schema:Organization |