Chemical Compositions of PM2.5 Emitted from Diesel Trucks and Construction Equipment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Yayong Liu, Wenjie Zhang, Wen Yang, Zhipeng Bai, Xueyan Zhao

ABSTRACT

This study reported the chemical compositions of PM2.5 for seven kinds of China IV diesel trucks and three kinds of stage II construction equipment. Filter samples were directly collected at the tailpipe with a dilution system. Twenty elements (Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sn, Sb, Ba and Pb), water-soluble ions (WSIs) including NH4+, K+, Ca2+, Cl−, NO3− and SO42−, and carbonaceous species were analyzed and characterized. The uncertainties of these species were also estimated. Overall, the highest proportion of PM2.5 was contributed by carbonaceous matter (OC and EC), accounting for 46.4 and 38.5% for trucks and construction equipment, respectively. The EC/OC ratios were higher than 1, with lowest in light-duty diesel trucks (LDDTs) as 1.4 ± 0.2 and highest in excavators as 5.1 ± 0.3. Similarities and differences were compared among source profiles using the residual (R)/uncertainty (U) ratios. Also Pearson’s correlation coefficients among the chemical compositions were analyzed to determine the relationships between the various chemical components. In addition, the source profiles of diesel trucks and construction equipment in our study were compared with those reported by other studies in recent years from China. Variations were observed in the results due to uncontrolled factors such as operating conditions, fuel quality and sampling measurements. To assess these uncertainties, better knowledge of local source profiles and more elaborate measurements are needed for future research. More... »

PAGES

51-60

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41810-017-0020-2

DOI

http://dx.doi.org/10.1007/s41810-017-0020-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101364958


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Research Academy of Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418569.7", 
          "name": [
            "State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yayong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Research Academy of Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418569.7", 
          "name": [
            "State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wenjie", 
        "id": "sg:person.01055501333.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055501333.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Research Academy of Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418569.7", 
          "name": [
            "State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Wen", 
        "id": "sg:person.01064700273.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064700273.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Research Academy of Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418569.7", 
          "name": [
            "State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Zhipeng", 
        "id": "sg:person.01266713136.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266713136.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Research Academy of Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418569.7", 
          "name": [
            "State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xueyan", 
        "id": "sg:person.0721234607.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721234607.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apr.2016.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000103608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1352-2310(94)00276-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001966284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005353276", 
          "https://doi.org/10.1038/nature13774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.06.156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006223630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5094/apr.2010.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009147389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es802930x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es802930x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2015.01.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009984716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2013.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014743092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2008.12.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017042150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2003.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018969219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2003.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018969219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2015.04.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021655745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-016-5377-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021832588", 
          "https://doi.org/10.1007/s10661-016-5377-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-016-5377-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021832588", 
          "https://doi.org/10.1007/s10661-016-5377-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11869-015-0338-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022950752", 
          "https://doi.org/10.1007/s11869-015-0338-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11869-015-0338-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022950752", 
          "https://doi.org/10.1007/s11869-015-0338-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(02)01021-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024385516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025213615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025213615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025213615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025213615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2013.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025517961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0b013e3181dbece1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027798917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.09.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028864918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1616540113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031573602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-9697(01)00770-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032824120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2016.07.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033056507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2016.07.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033056507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2016.07.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033056507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2014.07.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034017611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2009.11.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034046877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2015.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037446322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2015.05.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039186880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.01.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040150511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5094/apr.2014.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040547299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043047492", 
          "https://doi.org/10.1038/ncomms4098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-6535(00)00171-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043143481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045378614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11783-016-0879-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045472739", 
          "https://doi.org/10.1007/s11783-016-0879-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11783-016-0879-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045472739", 
          "https://doi.org/10.1007/s11783-016-0879-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2011.10.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047434452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2015.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047530705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2014.12.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052679987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.est.5b03827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055088227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.est.5b03827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055088227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-2016-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072655648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.02.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083912183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.04.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085040273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4209/aaqr.2016.10.0469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085626033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-17-6779-2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085962546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4209/aaqr.2017.04.0127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090094945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2017.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090358425"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "This study reported the chemical compositions of PM2.5 for seven kinds of China IV diesel trucks and three kinds of stage II construction equipment. Filter samples were directly collected at the tailpipe with a dilution system. Twenty elements (Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sn, Sb, Ba and Pb), water-soluble ions (WSIs) including NH4+, K+, Ca2+, Cl\u2212, NO3\u2212 and SO42\u2212, and carbonaceous species were analyzed and characterized. The uncertainties of these species were also estimated. Overall, the highest proportion of PM2.5 was contributed by carbonaceous matter (OC and EC), accounting for 46.4 and 38.5% for trucks and construction equipment, respectively. The EC/OC ratios were higher than 1, with lowest in light-duty diesel trucks (LDDTs) as 1.4 \u00b1 0.2 and highest in excavators as 5.1 \u00b1 0.3. Similarities and differences were compared among source profiles using the residual (R)/uncertainty (U) ratios. Also Pearson\u2019s correlation coefficients among the chemical compositions were analyzed to determine the relationships between the various chemical components. In addition, the source profiles of diesel trucks and construction equipment in our study were compared with those reported by other studies in recent years from China. Variations were observed in the results due to uncontrolled factors such as operating conditions, fuel quality and sampling measurements. To assess these uncertainties, better knowledge of local source profiles and more elaborate measurements are needed for future research.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41810-017-0020-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1290403", 
        "issn": [
          "2510-375X", 
          "2510-3768"
        ], 
        "name": "Aerosol Science and Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Chemical Compositions of PM2.5 Emitted from Diesel Trucks and Construction Equipment", 
    "pagination": "51-60", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e227cde96b73d08942fd7dab50ea68ce2bb92636a727dca53a77b0bc45878731"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41810-017-0020-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101364958"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41810-017-0020-2", 
      "https://app.dimensions.ai/details/publication/pub.1101364958"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60369_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41810-017-0020-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41810-017-0020-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41810-017-0020-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41810-017-0020-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41810-017-0020-2'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41810-017-0020-2 schema:about anzsrc-for:04
2 anzsrc-for:0402
3 schema:author N459ec828816c480a94bb73bfa01aa0c8
4 schema:citation sg:pub.10.1007/s10661-016-5377-1
5 sg:pub.10.1007/s11783-016-0879-1
6 sg:pub.10.1007/s11869-015-0338-3
7 sg:pub.10.1038/nature13774
8 sg:pub.10.1038/ncomms4098
9 https://doi.org/10.1016/1352-2310(94)00276-q
10 https://doi.org/10.1016/j.apr.2016.01.005
11 https://doi.org/10.1016/j.atmosenv.2003.07.007
12 https://doi.org/10.1016/j.atmosenv.2006.08.007
13 https://doi.org/10.1016/j.atmosenv.2008.12.046
14 https://doi.org/10.1016/j.atmosenv.2011.10.045
15 https://doi.org/10.1016/j.atmosenv.2014.07.051
16 https://doi.org/10.1016/j.atmosenv.2014.12.066
17 https://doi.org/10.1016/j.atmosenv.2015.01.073
18 https://doi.org/10.1016/j.atmosenv.2015.07.014
19 https://doi.org/10.1016/j.atmosenv.2017.07.009
20 https://doi.org/10.1016/j.atmosres.2013.08.015
21 https://doi.org/10.1016/j.enpol.2015.01.009
22 https://doi.org/10.1016/j.envpol.2016.07.061
23 https://doi.org/10.1016/j.fuel.2013.06.044
24 https://doi.org/10.1016/j.jhazmat.2015.04.076
25 https://doi.org/10.1016/j.scitotenv.2009.11.061
26 https://doi.org/10.1016/j.scitotenv.2015.05.084
27 https://doi.org/10.1016/j.scitotenv.2016.01.077
28 https://doi.org/10.1016/j.scitotenv.2016.02.048
29 https://doi.org/10.1016/j.scitotenv.2016.06.156
30 https://doi.org/10.1016/j.scitotenv.2016.09.040
31 https://doi.org/10.1016/j.scitotenv.2017.02.071
32 https://doi.org/10.1016/j.scitotenv.2017.04.106
33 https://doi.org/10.1016/s0045-6535(00)00171-5
34 https://doi.org/10.1016/s0048-9697(01)00770-7
35 https://doi.org/10.1016/s1352-2310(02)01021-x
36 https://doi.org/10.1021/acs.est.5b03827
37 https://doi.org/10.1021/es802930x
38 https://doi.org/10.1073/pnas.1616540113
39 https://doi.org/10.1161/cir.0b013e3181dbece1
40 https://doi.org/10.4209/aaqr.2016.10.0469
41 https://doi.org/10.4209/aaqr.2017.04.0127
42 https://doi.org/10.5094/apr.2010.026
43 https://doi.org/10.5094/apr.2014.049
44 https://doi.org/10.5194/acp-17-6779-2017
45 https://doi.org/10.5194/acp-2016-50
46 schema:datePublished 2018-06
47 schema:datePublishedReg 2018-06-01
48 schema:description This study reported the chemical compositions of PM2.5 for seven kinds of China IV diesel trucks and three kinds of stage II construction equipment. Filter samples were directly collected at the tailpipe with a dilution system. Twenty elements (Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sn, Sb, Ba and Pb), water-soluble ions (WSIs) including NH4+, K+, Ca2+, Cl−, NO3− and SO42−, and carbonaceous species were analyzed and characterized. The uncertainties of these species were also estimated. Overall, the highest proportion of PM2.5 was contributed by carbonaceous matter (OC and EC), accounting for 46.4 and 38.5% for trucks and construction equipment, respectively. The EC/OC ratios were higher than 1, with lowest in light-duty diesel trucks (LDDTs) as 1.4 ± 0.2 and highest in excavators as 5.1 ± 0.3. Similarities and differences were compared among source profiles using the residual (R)/uncertainty (U) ratios. Also Pearson’s correlation coefficients among the chemical compositions were analyzed to determine the relationships between the various chemical components. In addition, the source profiles of diesel trucks and construction equipment in our study were compared with those reported by other studies in recent years from China. Variations were observed in the results due to uncontrolled factors such as operating conditions, fuel quality and sampling measurements. To assess these uncertainties, better knowledge of local source profiles and more elaborate measurements are needed for future research.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N30c15bbf3a8e4a43ac9840f0acbc9b09
53 Nde7a0ec5df0e4c5f855e804b243d3a66
54 sg:journal.1290403
55 schema:name Chemical Compositions of PM2.5 Emitted from Diesel Trucks and Construction Equipment
56 schema:pagination 51-60
57 schema:productId N0e24c3c1fea14dcc8aa908ffb15267f0
58 N2f23ef35d4b346af96ecbe55006e8e93
59 Nc10808b8177b461d80208865cd498fad
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101364958
61 https://doi.org/10.1007/s41810-017-0020-2
62 schema:sdDatePublished 2019-04-11T11:05
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ne6007311ae2c4af9add4e92537cc667f
65 schema:url https://link.springer.com/10.1007%2Fs41810-017-0020-2
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0dc5d69bea644b6e8ae0a0ba4c1a4d0f schema:affiliation https://www.grid.ac/institutes/grid.418569.7
70 schema:familyName Liu
71 schema:givenName Yayong
72 rdf:type schema:Person
73 N0e24c3c1fea14dcc8aa908ffb15267f0 schema:name dimensions_id
74 schema:value pub.1101364958
75 rdf:type schema:PropertyValue
76 N11fdef7ae4f94d3cb4b1c695a24f2c99 rdf:first sg:person.01064700273.61
77 rdf:rest Nc2cd0023391e4868af95175a1aafd413
78 N2f23ef35d4b346af96ecbe55006e8e93 schema:name doi
79 schema:value 10.1007/s41810-017-0020-2
80 rdf:type schema:PropertyValue
81 N30c15bbf3a8e4a43ac9840f0acbc9b09 schema:volumeNumber 2
82 rdf:type schema:PublicationVolume
83 N459ec828816c480a94bb73bfa01aa0c8 rdf:first N0dc5d69bea644b6e8ae0a0ba4c1a4d0f
84 rdf:rest Nc3ee762fdcc845db80589566b1da3fd8
85 Nc02226be753b485abc1888f8fcab54f8 rdf:first sg:person.0721234607.26
86 rdf:rest rdf:nil
87 Nc10808b8177b461d80208865cd498fad schema:name readcube_id
88 schema:value e227cde96b73d08942fd7dab50ea68ce2bb92636a727dca53a77b0bc45878731
89 rdf:type schema:PropertyValue
90 Nc2cd0023391e4868af95175a1aafd413 rdf:first sg:person.01266713136.43
91 rdf:rest Nc02226be753b485abc1888f8fcab54f8
92 Nc3ee762fdcc845db80589566b1da3fd8 rdf:first sg:person.01055501333.06
93 rdf:rest N11fdef7ae4f94d3cb4b1c695a24f2c99
94 Nde7a0ec5df0e4c5f855e804b243d3a66 schema:issueNumber 2
95 rdf:type schema:PublicationIssue
96 Ne6007311ae2c4af9add4e92537cc667f schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
99 schema:name Earth Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
102 schema:name Geochemistry
103 rdf:type schema:DefinedTerm
104 sg:journal.1290403 schema:issn 2510-375X
105 2510-3768
106 schema:name Aerosol Science and Engineering
107 rdf:type schema:Periodical
108 sg:person.01055501333.06 schema:affiliation https://www.grid.ac/institutes/grid.418569.7
109 schema:familyName Zhang
110 schema:givenName Wenjie
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055501333.06
112 rdf:type schema:Person
113 sg:person.01064700273.61 schema:affiliation https://www.grid.ac/institutes/grid.418569.7
114 schema:familyName Yang
115 schema:givenName Wen
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064700273.61
117 rdf:type schema:Person
118 sg:person.01266713136.43 schema:affiliation https://www.grid.ac/institutes/grid.418569.7
119 schema:familyName Bai
120 schema:givenName Zhipeng
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266713136.43
122 rdf:type schema:Person
123 sg:person.0721234607.26 schema:affiliation https://www.grid.ac/institutes/grid.418569.7
124 schema:familyName Zhao
125 schema:givenName Xueyan
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721234607.26
127 rdf:type schema:Person
128 sg:pub.10.1007/s10661-016-5377-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021832588
129 https://doi.org/10.1007/s10661-016-5377-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11783-016-0879-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045472739
132 https://doi.org/10.1007/s11783-016-0879-1
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11869-015-0338-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022950752
135 https://doi.org/10.1007/s11869-015-0338-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature13774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005353276
138 https://doi.org/10.1038/nature13774
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ncomms4098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043047492
141 https://doi.org/10.1038/ncomms4098
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/1352-2310(94)00276-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1001966284
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.apr.2016.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000103608
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.atmosenv.2003.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018969219
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.atmosenv.2006.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045378614
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.atmosenv.2008.12.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017042150
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.atmosenv.2011.10.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047434452
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.atmosenv.2014.07.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034017611
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.atmosenv.2014.12.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052679987
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.atmosenv.2015.01.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009984716
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.atmosenv.2015.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037446322
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.atmosenv.2017.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090358425
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.atmosres.2013.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025517961
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.enpol.2015.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047530705
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.envpol.2016.07.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033056507
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.fuel.2013.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014743092
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jhazmat.2015.04.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021655745
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.scitotenv.2009.11.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034046877
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.scitotenv.2015.05.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039186880
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.scitotenv.2016.01.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040150511
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.scitotenv.2016.02.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025213615
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.scitotenv.2016.06.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006223630
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.scitotenv.2016.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028864918
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.scitotenv.2017.02.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083912183
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.scitotenv.2017.04.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085040273
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0045-6535(00)00171-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043143481
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0048-9697(01)00770-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032824120
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s1352-2310(02)01021-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024385516
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/acs.est.5b03827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055088227
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/es802930x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321698
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.1616540113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031573602
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1161/cir.0b013e3181dbece1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027798917
204 rdf:type schema:CreativeWork
205 https://doi.org/10.4209/aaqr.2016.10.0469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085626033
206 rdf:type schema:CreativeWork
207 https://doi.org/10.4209/aaqr.2017.04.0127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090094945
208 rdf:type schema:CreativeWork
209 https://doi.org/10.5094/apr.2010.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009147389
210 rdf:type schema:CreativeWork
211 https://doi.org/10.5094/apr.2014.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040547299
212 rdf:type schema:CreativeWork
213 https://doi.org/10.5194/acp-17-6779-2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085962546
214 rdf:type schema:CreativeWork
215 https://doi.org/10.5194/acp-2016-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072655648
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.418569.7 schema:alternateName Chinese Research Academy of Environmental Sciences
218 schema:name State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...