Full Detector Simulation with Unprecedented Background Occupancy at a Muon Collider View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-05

AUTHORS

Nazar Bartosik, Paolo Andreetto, Laura Buonincontri, Massimo Casarsa, Alessio Gianelle, Simone Pagan Griso, Sergo Jindariani, Donatella Lucchesi, Federico Meloni, Nadia Pastrone, Lorenzo Sestini

ABSTRACT

In recent years, a Muon collider has attracted a lot of interest in the high-energy physics community, thanks to its ability of achieving clean interaction signatures at multi-TeV collision energies in the most cost-effective way. Estimation of the physics potential of such an experiment must take into account the impact of beam-induced background on the detector performance, which has to be carefully evaluated using full detector simulation. Tracing of all the background particles entering the detector region in a single bunch crossing is out of reach for any realistic computing facility due to the unprecedented number of such particles. To make it feasible a number of optimisations have been applied to the detector simulation workflow. This contribution presents an overview of the main characteristics of the beam-induced background at a Muon collider, the detector technologies considered for the experiment and how they are taken into account to strongly reduce the number of irrelevant computations performed during the detector simulation. Special attention is dedicated to the optimisation of track reconstruction with the conformal tracking algorithm in this high-occupancy environment, which is the most computationally demanding part of event reconstruction. More... »

PAGES

21

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x

DOI

http://dx.doi.org/10.1007/s41781-021-00067-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141644912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Torino, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470222.1", 
          "name": [
            "INFN Sezione di Torino, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartosik", 
        "givenName": "Nazar", 
        "id": "sg:person.011364704307.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364704307.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andreetto", 
        "givenName": "Paolo", 
        "id": "sg:person.011423132106.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011423132106.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova and University of Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova and University of Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buonincontri", 
        "givenName": "Laura", 
        "id": "sg:person.012142215403.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142215403.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470223.0", 
          "name": [
            "INFN Sezione di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casarsa", 
        "givenName": "Massimo", 
        "id": "sg:person.016303637307.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303637307.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gianelle", 
        "givenName": "Alessio", 
        "id": "sg:person.012755563116.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755563116.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LBNL, Berkeley, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "LBNL, Berkeley, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griso", 
        "givenName": "Simone Pagan", 
        "id": "sg:person.015003674331.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015003674331.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FNAL, Batavia, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "FNAL, Batavia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jindariani", 
        "givenName": "Sergo", 
        "id": "sg:person.01337062362.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337062362.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova and University of Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova and University of Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lucchesi", 
        "givenName": "Donatella", 
        "id": "sg:person.016610712707.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610712707.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DESY, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7683.a", 
          "name": [
            "DESY, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meloni", 
        "givenName": "Federico", 
        "id": "sg:person.015100170553.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100170553.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Torino, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470222.1", 
          "name": [
            "INFN Sezione di Torino, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pastrone", 
        "givenName": "Nadia", 
        "id": "sg:person.015732715702.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732715702.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sestini", 
        "givenName": "Lorenzo", 
        "id": "sg:person.012054514205.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054514205.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41567-020-01130-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134930324", 
          "https://doi.org/10.1038/s41567-020-01130-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-05", 
    "datePublishedReg": "2021-10-05", 
    "description": "In recent years, a Muon collider has attracted a lot of interest in the high-energy physics community, thanks to its ability of achieving clean interaction signatures at multi-TeV collision energies in the most cost-effective way. Estimation of the physics potential of such an experiment must take into account the impact of beam-induced background on the detector performance, which has to be carefully evaluated using full detector simulation. Tracing of all the background particles entering the detector region in a single bunch crossing is out of reach for any realistic computing facility due to the unprecedented number of such particles. To make it feasible a number of optimisations have been applied to the detector simulation workflow. This contribution presents an overview of the main characteristics of the beam-induced background at a Muon collider, the detector technologies considered for the experiment and how they are taken into account to strongly reduce the number of irrelevant computations performed during the detector simulation. Special attention is dedicated to the optimisation of track reconstruction with the conformal tracking algorithm in this high-occupancy environment, which is the most computationally demanding part of event reconstruction.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41781-021-00067-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1301469", 
        "issn": [
          "2510-2036", 
          "2510-2044"
        ], 
        "name": "Computing and Software for Big Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "beam-induced background", 
      "full detector simulation", 
      "muon collider", 
      "detector simulation", 
      "high energy physics community", 
      "high occupancy environment", 
      "physics potential", 
      "collision energy", 
      "detector technology", 
      "detector region", 
      "physics community", 
      "detector performance", 
      "track reconstruction", 
      "bunch crossing", 
      "Collider", 
      "event reconstruction", 
      "interaction signatures", 
      "background particles", 
      "such particles", 
      "particles", 
      "simulations", 
      "energy", 
      "computing facilities", 
      "crossing", 
      "experiments", 
      "signatures", 
      "main characteristics", 
      "special attention", 
      "account", 
      "thanks", 
      "reconstruction", 
      "unprecedented number", 
      "simulation workflow", 
      "region", 
      "contribution", 
      "facilities", 
      "potential", 
      "reach", 
      "background", 
      "occupancy", 
      "computation", 
      "number", 
      "technology", 
      "optimization", 
      "interest", 
      "recent years", 
      "characteristics", 
      "way", 
      "cost-effective way", 
      "overview", 
      "tracking algorithm", 
      "part", 
      "performance", 
      "environment", 
      "estimation", 
      "attention", 
      "algorithm", 
      "ability", 
      "impact", 
      "number of optimizations", 
      "years", 
      "workflow", 
      "community", 
      "irrelevant computations", 
      "clean interaction signatures", 
      "multi-TeV collision energies", 
      "single bunch crossing", 
      "realistic computing facility", 
      "detector simulation workflow", 
      "conformal tracking algorithm", 
      "Unprecedented Background Occupancy", 
      "Background Occupancy"
    ], 
    "name": "Full Detector Simulation with Unprecedented Background Occupancy at a Muon Collider", 
    "pagination": "21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141644912"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41781-021-00067-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41781-021-00067-x", 
      "https://app.dimensions.ai/details/publication/pub.1141644912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_913.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41781-021-00067-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      22 PREDICATES      98 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41781-021-00067-x schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N334b44c6c35046d79085cc412fce6559
4 schema:citation sg:pub.10.1038/s41567-020-01130-x
5 schema:datePublished 2021-10-05
6 schema:datePublishedReg 2021-10-05
7 schema:description In recent years, a Muon collider has attracted a lot of interest in the high-energy physics community, thanks to its ability of achieving clean interaction signatures at multi-TeV collision energies in the most cost-effective way. Estimation of the physics potential of such an experiment must take into account the impact of beam-induced background on the detector performance, which has to be carefully evaluated using full detector simulation. Tracing of all the background particles entering the detector region in a single bunch crossing is out of reach for any realistic computing facility due to the unprecedented number of such particles. To make it feasible a number of optimisations have been applied to the detector simulation workflow. This contribution presents an overview of the main characteristics of the beam-induced background at a Muon collider, the detector technologies considered for the experiment and how they are taken into account to strongly reduce the number of irrelevant computations performed during the detector simulation. Special attention is dedicated to the optimisation of track reconstruction with the conformal tracking algorithm in this high-occupancy environment, which is the most computationally demanding part of event reconstruction.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N8f021b7f2f4a4bdea59e709fde19e546
12 Nab97c13ad4b64bc9af5ac27f3ee95aee
13 sg:journal.1301469
14 schema:keywords Background Occupancy
15 Collider
16 Unprecedented Background Occupancy
17 ability
18 account
19 algorithm
20 attention
21 background
22 background particles
23 beam-induced background
24 bunch crossing
25 characteristics
26 clean interaction signatures
27 collision energy
28 community
29 computation
30 computing facilities
31 conformal tracking algorithm
32 contribution
33 cost-effective way
34 crossing
35 detector performance
36 detector region
37 detector simulation
38 detector simulation workflow
39 detector technology
40 energy
41 environment
42 estimation
43 event reconstruction
44 experiments
45 facilities
46 full detector simulation
47 high energy physics community
48 high occupancy environment
49 impact
50 interaction signatures
51 interest
52 irrelevant computations
53 main characteristics
54 multi-TeV collision energies
55 muon collider
56 number
57 number of optimizations
58 occupancy
59 optimization
60 overview
61 part
62 particles
63 performance
64 physics community
65 physics potential
66 potential
67 reach
68 realistic computing facility
69 recent years
70 reconstruction
71 region
72 signatures
73 simulation workflow
74 simulations
75 single bunch crossing
76 special attention
77 such particles
78 technology
79 thanks
80 track reconstruction
81 tracking algorithm
82 unprecedented number
83 way
84 workflow
85 years
86 schema:name Full Detector Simulation with Unprecedented Background Occupancy at a Muon Collider
87 schema:pagination 21
88 schema:productId N9fc93be960d341ddac30779222874fd9
89 Nedf567bd1a574e4caa60bcd1b43e1cc6
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141644912
91 https://doi.org/10.1007/s41781-021-00067-x
92 schema:sdDatePublished 2022-01-01T19:03
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nf70bada4e7d54c6fb7c2c2ccee9acb8e
95 schema:url https://doi.org/10.1007/s41781-021-00067-x
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N0fa8b1afec664b95816b71a05610c0f5 rdf:first sg:person.012755563116.66
100 rdf:rest Nd6091f3ed0884c27a12ca5f83fcd94a1
101 N334b44c6c35046d79085cc412fce6559 rdf:first sg:person.011364704307.65
102 rdf:rest N5814405e1e9a48dcbf5b694ce6e46c46
103 N502b84cc28d34fbb86b1be8dc3b074d0 rdf:first sg:person.016610712707.36
104 rdf:rest N5991175866d24e0ca388b52ce06d61e8
105 N5814405e1e9a48dcbf5b694ce6e46c46 rdf:first sg:person.011423132106.07
106 rdf:rest Ncbcb0c09f88b48dba344682b1781bf0f
107 N5991175866d24e0ca388b52ce06d61e8 rdf:first sg:person.015100170553.18
108 rdf:rest Na28a9ba6a03b42478ab21cf48376e4e2
109 N8f021b7f2f4a4bdea59e709fde19e546 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 N9fc93be960d341ddac30779222874fd9 schema:name dimensions_id
112 schema:value pub.1141644912
113 rdf:type schema:PropertyValue
114 Na27cc7d883c74ab6b5ba7ccd88b0e56b rdf:first sg:person.012054514205.04
115 rdf:rest rdf:nil
116 Na28a9ba6a03b42478ab21cf48376e4e2 rdf:first sg:person.015732715702.45
117 rdf:rest Na27cc7d883c74ab6b5ba7ccd88b0e56b
118 Nab97c13ad4b64bc9af5ac27f3ee95aee schema:volumeNumber 5
119 rdf:type schema:PublicationVolume
120 Nb122d725ed2e47c88f6d8cd8e412bec5 rdf:first sg:person.016303637307.54
121 rdf:rest N0fa8b1afec664b95816b71a05610c0f5
122 Ncb95fb2ac8f84de7b80b8e1a45780ad7 rdf:first sg:person.01337062362.25
123 rdf:rest N502b84cc28d34fbb86b1be8dc3b074d0
124 Ncbcb0c09f88b48dba344682b1781bf0f rdf:first sg:person.012142215403.51
125 rdf:rest Nb122d725ed2e47c88f6d8cd8e412bec5
126 Nd6091f3ed0884c27a12ca5f83fcd94a1 rdf:first sg:person.015003674331.42
127 rdf:rest Ncb95fb2ac8f84de7b80b8e1a45780ad7
128 Nedf567bd1a574e4caa60bcd1b43e1cc6 schema:name doi
129 schema:value 10.1007/s41781-021-00067-x
130 rdf:type schema:PropertyValue
131 Nf70bada4e7d54c6fb7c2c2ccee9acb8e schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
137 schema:name Other Physical Sciences
138 rdf:type schema:DefinedTerm
139 sg:journal.1301469 schema:issn 2510-2036
140 2510-2044
141 schema:name Computing and Software for Big Science
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.011364704307.65 schema:affiliation grid-institutes:grid.470222.1
145 schema:familyName Bartosik
146 schema:givenName Nazar
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364704307.65
148 rdf:type schema:Person
149 sg:person.011423132106.07 schema:affiliation grid-institutes:grid.470212.2
150 schema:familyName Andreetto
151 schema:givenName Paolo
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011423132106.07
153 rdf:type schema:Person
154 sg:person.012054514205.04 schema:affiliation grid-institutes:grid.470212.2
155 schema:familyName Sestini
156 schema:givenName Lorenzo
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054514205.04
158 rdf:type schema:Person
159 sg:person.012142215403.51 schema:affiliation grid-institutes:grid.470212.2
160 schema:familyName Buonincontri
161 schema:givenName Laura
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142215403.51
163 rdf:type schema:Person
164 sg:person.012755563116.66 schema:affiliation grid-institutes:grid.470212.2
165 schema:familyName Gianelle
166 schema:givenName Alessio
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755563116.66
168 rdf:type schema:Person
169 sg:person.01337062362.25 schema:affiliation grid-institutes:None
170 schema:familyName Jindariani
171 schema:givenName Sergo
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337062362.25
173 rdf:type schema:Person
174 sg:person.015003674331.42 schema:affiliation grid-institutes:grid.184769.5
175 schema:familyName Griso
176 schema:givenName Simone Pagan
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015003674331.42
178 rdf:type schema:Person
179 sg:person.015100170553.18 schema:affiliation grid-institutes:grid.7683.a
180 schema:familyName Meloni
181 schema:givenName Federico
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100170553.18
183 rdf:type schema:Person
184 sg:person.015732715702.45 schema:affiliation grid-institutes:grid.470222.1
185 schema:familyName Pastrone
186 schema:givenName Nadia
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732715702.45
188 rdf:type schema:Person
189 sg:person.016303637307.54 schema:affiliation grid-institutes:grid.470223.0
190 schema:familyName Casarsa
191 schema:givenName Massimo
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303637307.54
193 rdf:type schema:Person
194 sg:person.016610712707.36 schema:affiliation grid-institutes:grid.470212.2
195 schema:familyName Lucchesi
196 schema:givenName Donatella
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610712707.36
198 rdf:type schema:Person
199 sg:pub.10.1038/s41567-020-01130-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1134930324
200 https://doi.org/10.1038/s41567-020-01130-x
201 rdf:type schema:CreativeWork
202 grid-institutes:None schema:alternateName FNAL, Batavia, USA
203 schema:name FNAL, Batavia, USA
204 rdf:type schema:Organization
205 grid-institutes:grid.184769.5 schema:alternateName LBNL, Berkeley, USA
206 schema:name LBNL, Berkeley, USA
207 rdf:type schema:Organization
208 grid-institutes:grid.470212.2 schema:alternateName INFN Sezione di Padova and University of Padova, Padua, Italy
209 INFN Sezione di Padova, Padua, Italy
210 schema:name INFN Sezione di Padova and University of Padova, Padua, Italy
211 INFN Sezione di Padova, Padua, Italy
212 rdf:type schema:Organization
213 grid-institutes:grid.470222.1 schema:alternateName INFN Sezione di Torino, Turin, Italy
214 schema:name INFN Sezione di Torino, Turin, Italy
215 rdf:type schema:Organization
216 grid-institutes:grid.470223.0 schema:alternateName INFN Sezione di Trieste, Trieste, Italy
217 schema:name INFN Sezione di Trieste, Trieste, Italy
218 rdf:type schema:Organization
219 grid-institutes:grid.7683.a schema:alternateName DESY, Hamburg, Germany
220 schema:name DESY, Hamburg, Germany
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...