Full Detector Simulation with Unprecedented Background Occupancy at a Muon Collider View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-05

AUTHORS

Nazar Bartosik, Paolo Andreetto, Laura Buonincontri, Massimo Casarsa, Alessio Gianelle, Simone Pagan Griso, Sergo Jindariani, Donatella Lucchesi, Federico Meloni, Nadia Pastrone, Lorenzo Sestini

ABSTRACT

In recent years, a Muon collider has attracted a lot of interest in the high-energy physics community, thanks to its ability of achieving clean interaction signatures at multi-TeV collision energies in the most cost-effective way. Estimation of the physics potential of such an experiment must take into account the impact of beam-induced background on the detector performance, which has to be carefully evaluated using full detector simulation. Tracing of all the background particles entering the detector region in a single bunch crossing is out of reach for any realistic computing facility due to the unprecedented number of such particles. To make it feasible a number of optimisations have been applied to the detector simulation workflow. This contribution presents an overview of the main characteristics of the beam-induced background at a Muon collider, the detector technologies considered for the experiment and how they are taken into account to strongly reduce the number of irrelevant computations performed during the detector simulation. Special attention is dedicated to the optimisation of track reconstruction with the conformal tracking algorithm in this high-occupancy environment, which is the most computationally demanding part of event reconstruction. More... »

PAGES

21

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x

DOI

http://dx.doi.org/10.1007/s41781-021-00067-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141644912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Torino, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470222.1", 
          "name": [
            "INFN Sezione di Torino, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartosik", 
        "givenName": "Nazar", 
        "id": "sg:person.011364704307.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364704307.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andreetto", 
        "givenName": "Paolo", 
        "id": "sg:person.011423132106.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011423132106.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova and University of Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova and University of Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buonincontri", 
        "givenName": "Laura", 
        "id": "sg:person.012142215403.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142215403.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470223.0", 
          "name": [
            "INFN Sezione di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casarsa", 
        "givenName": "Massimo", 
        "id": "sg:person.016303637307.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303637307.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gianelle", 
        "givenName": "Alessio", 
        "id": "sg:person.012755563116.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755563116.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LBNL, Berkeley, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "LBNL, Berkeley, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griso", 
        "givenName": "Simone Pagan", 
        "id": "sg:person.015003674331.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015003674331.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FNAL, Batavia, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "FNAL, Batavia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jindariani", 
        "givenName": "Sergo", 
        "id": "sg:person.01337062362.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337062362.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova and University of Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova and University of Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lucchesi", 
        "givenName": "Donatella", 
        "id": "sg:person.016610712707.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610712707.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DESY, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7683.a", 
          "name": [
            "DESY, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meloni", 
        "givenName": "Federico", 
        "id": "sg:person.015100170553.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100170553.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Torino, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470222.1", 
          "name": [
            "INFN Sezione di Torino, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pastrone", 
        "givenName": "Nadia", 
        "id": "sg:person.015732715702.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732715702.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova, Padua, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "INFN Sezione di Padova, Padua, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sestini", 
        "givenName": "Lorenzo", 
        "id": "sg:person.012054514205.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054514205.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41567-020-01130-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134930324", 
          "https://doi.org/10.1038/s41567-020-01130-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-05", 
    "datePublishedReg": "2021-10-05", 
    "description": "In recent years, a Muon collider has attracted a lot of interest in the high-energy physics community, thanks to its ability of achieving clean interaction signatures at multi-TeV collision energies in the most cost-effective way. Estimation of the physics potential of such an experiment must take into account the impact of beam-induced background on the detector performance, which has to be carefully evaluated using full detector simulation. Tracing of all the background particles entering the detector region in a single bunch crossing is out of reach for any realistic computing facility due to the unprecedented number of such particles. To make it feasible a number of optimisations have been applied to the detector simulation workflow. This contribution presents an overview of the main characteristics of the beam-induced background at a Muon collider, the detector technologies considered for the experiment and how they are taken into account to strongly reduce the number of irrelevant computations performed during the detector simulation. Special attention is dedicated to the optimisation of track reconstruction with the conformal tracking algorithm in this high-occupancy environment, which is the most computationally demanding part of event reconstruction.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41781-021-00067-x", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1301469", 
        "issn": [
          "2510-2036", 
          "2510-2044"
        ], 
        "name": "Computing and Software for Big Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "beam-induced background", 
      "full detector simulation", 
      "muon collider", 
      "detector simulation", 
      "high energy physics community", 
      "high occupancy environment", 
      "physics potential", 
      "collision energy", 
      "detector technology", 
      "physics community", 
      "detector region", 
      "bunch crossing", 
      "detector performance", 
      "track reconstruction", 
      "Collider", 
      "event reconstruction", 
      "background particles", 
      "interaction signatures", 
      "such particles", 
      "particles", 
      "simulations", 
      "irrelevant computations", 
      "energy", 
      "computing facilities", 
      "crossing", 
      "experiments", 
      "signatures", 
      "simulation workflow", 
      "main characteristics", 
      "account", 
      "special attention", 
      "thanks", 
      "reconstruction", 
      "unprecedented number", 
      "region", 
      "facilities", 
      "contribution", 
      "potential", 
      "reach", 
      "occupancy", 
      "computation", 
      "background", 
      "number", 
      "optimization", 
      "interest", 
      "technology", 
      "recent years", 
      "characteristics", 
      "way", 
      "cost-effective way", 
      "number of optimizations", 
      "overview", 
      "tracking algorithm", 
      "performance", 
      "part", 
      "environment", 
      "estimation", 
      "attention", 
      "ability", 
      "algorithm", 
      "impact", 
      "years", 
      "workflow", 
      "community"
    ], 
    "name": "Full Detector Simulation with Unprecedented Background Occupancy at a Muon Collider", 
    "pagination": "21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141644912"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41781-021-00067-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41781-021-00067-x", 
      "https://app.dimensions.ai/details/publication/pub.1141644912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_916.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41781-021-00067-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41781-021-00067-x'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      89 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41781-021-00067-x schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N97a1706fb24a4ed7986ba5c9eabc5fec
4 schema:citation sg:pub.10.1038/s41567-020-01130-x
5 schema:datePublished 2021-10-05
6 schema:datePublishedReg 2021-10-05
7 schema:description In recent years, a Muon collider has attracted a lot of interest in the high-energy physics community, thanks to its ability of achieving clean interaction signatures at multi-TeV collision energies in the most cost-effective way. Estimation of the physics potential of such an experiment must take into account the impact of beam-induced background on the detector performance, which has to be carefully evaluated using full detector simulation. Tracing of all the background particles entering the detector region in a single bunch crossing is out of reach for any realistic computing facility due to the unprecedented number of such particles. To make it feasible a number of optimisations have been applied to the detector simulation workflow. This contribution presents an overview of the main characteristics of the beam-induced background at a Muon collider, the detector technologies considered for the experiment and how they are taken into account to strongly reduce the number of irrelevant computations performed during the detector simulation. Special attention is dedicated to the optimisation of track reconstruction with the conformal tracking algorithm in this high-occupancy environment, which is the most computationally demanding part of event reconstruction.
8 schema:genre article
9 schema:isAccessibleForFree true
10 schema:isPartOf Nddfcf1ecc182460d94c22816c86b7ede
11 Nf815cf93497b42bf98c2b7af8913c4e0
12 sg:journal.1301469
13 schema:keywords Collider
14 ability
15 account
16 algorithm
17 attention
18 background
19 background particles
20 beam-induced background
21 bunch crossing
22 characteristics
23 collision energy
24 community
25 computation
26 computing facilities
27 contribution
28 cost-effective way
29 crossing
30 detector performance
31 detector region
32 detector simulation
33 detector technology
34 energy
35 environment
36 estimation
37 event reconstruction
38 experiments
39 facilities
40 full detector simulation
41 high energy physics community
42 high occupancy environment
43 impact
44 interaction signatures
45 interest
46 irrelevant computations
47 main characteristics
48 muon collider
49 number
50 number of optimizations
51 occupancy
52 optimization
53 overview
54 part
55 particles
56 performance
57 physics community
58 physics potential
59 potential
60 reach
61 recent years
62 reconstruction
63 region
64 signatures
65 simulation workflow
66 simulations
67 special attention
68 such particles
69 technology
70 thanks
71 track reconstruction
72 tracking algorithm
73 unprecedented number
74 way
75 workflow
76 years
77 schema:name Full Detector Simulation with Unprecedented Background Occupancy at a Muon Collider
78 schema:pagination 21
79 schema:productId N164c8516e41b41149354a8910b058a4d
80 N1b91f4ada55d44148ae89279898087a1
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141644912
82 https://doi.org/10.1007/s41781-021-00067-x
83 schema:sdDatePublished 2022-12-01T06:43
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Ncdb1ceabb6804ce7904224a6570936bb
86 schema:url https://doi.org/10.1007/s41781-021-00067-x
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N164c8516e41b41149354a8910b058a4d schema:name dimensions_id
91 schema:value pub.1141644912
92 rdf:type schema:PropertyValue
93 N1b91f4ada55d44148ae89279898087a1 schema:name doi
94 schema:value 10.1007/s41781-021-00067-x
95 rdf:type schema:PropertyValue
96 N2a072eabbbed4667b5663f801a50269b rdf:first sg:person.015003674331.42
97 rdf:rest Ne5029bd3093141e2b9907733b2b043be
98 N371ffdcbebde4995b6945b6005eda3ea rdf:first sg:person.012755563116.66
99 rdf:rest N2a072eabbbed4667b5663f801a50269b
100 N64b5702febf24aadb6c701882dde75b9 rdf:first sg:person.011423132106.07
101 rdf:rest Nb48f34252d0947e5badd8470fdab01e2
102 N8931b9804e18418bae45fdf2d9601d9d rdf:first sg:person.016610712707.36
103 rdf:rest N8c9c812e6fa34862bc2ab5d60f9a9113
104 N8c9c812e6fa34862bc2ab5d60f9a9113 rdf:first sg:person.015100170553.18
105 rdf:rest N9ba71359daea4fb4a3940447b886584d
106 N97a1706fb24a4ed7986ba5c9eabc5fec rdf:first sg:person.011364704307.65
107 rdf:rest N64b5702febf24aadb6c701882dde75b9
108 N9ba71359daea4fb4a3940447b886584d rdf:first sg:person.015732715702.45
109 rdf:rest Nd8347157e3fc44968a3f0fd2133d1cef
110 Nb48f34252d0947e5badd8470fdab01e2 rdf:first sg:person.012142215403.51
111 rdf:rest Nbce6be95d7714ec69fea3fb816bd31ff
112 Nbce6be95d7714ec69fea3fb816bd31ff rdf:first sg:person.016303637307.54
113 rdf:rest N371ffdcbebde4995b6945b6005eda3ea
114 Ncdb1ceabb6804ce7904224a6570936bb schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nd8347157e3fc44968a3f0fd2133d1cef rdf:first sg:person.012054514205.04
117 rdf:rest rdf:nil
118 Nddfcf1ecc182460d94c22816c86b7ede schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 Ne5029bd3093141e2b9907733b2b043be rdf:first sg:person.01337062362.25
121 rdf:rest N8931b9804e18418bae45fdf2d9601d9d
122 Nf815cf93497b42bf98c2b7af8913c4e0 schema:volumeNumber 5
123 rdf:type schema:PublicationVolume
124 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
128 schema:name Other Physical Sciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1301469 schema:issn 2510-2036
131 2510-2044
132 schema:name Computing and Software for Big Science
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.011364704307.65 schema:affiliation grid-institutes:grid.470222.1
136 schema:familyName Bartosik
137 schema:givenName Nazar
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364704307.65
139 rdf:type schema:Person
140 sg:person.011423132106.07 schema:affiliation grid-institutes:grid.470212.2
141 schema:familyName Andreetto
142 schema:givenName Paolo
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011423132106.07
144 rdf:type schema:Person
145 sg:person.012054514205.04 schema:affiliation grid-institutes:grid.470212.2
146 schema:familyName Sestini
147 schema:givenName Lorenzo
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054514205.04
149 rdf:type schema:Person
150 sg:person.012142215403.51 schema:affiliation grid-institutes:grid.470212.2
151 schema:familyName Buonincontri
152 schema:givenName Laura
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142215403.51
154 rdf:type schema:Person
155 sg:person.012755563116.66 schema:affiliation grid-institutes:grid.470212.2
156 schema:familyName Gianelle
157 schema:givenName Alessio
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755563116.66
159 rdf:type schema:Person
160 sg:person.01337062362.25 schema:affiliation grid-institutes:None
161 schema:familyName Jindariani
162 schema:givenName Sergo
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337062362.25
164 rdf:type schema:Person
165 sg:person.015003674331.42 schema:affiliation grid-institutes:grid.184769.5
166 schema:familyName Griso
167 schema:givenName Simone Pagan
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015003674331.42
169 rdf:type schema:Person
170 sg:person.015100170553.18 schema:affiliation grid-institutes:grid.7683.a
171 schema:familyName Meloni
172 schema:givenName Federico
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100170553.18
174 rdf:type schema:Person
175 sg:person.015732715702.45 schema:affiliation grid-institutes:grid.470222.1
176 schema:familyName Pastrone
177 schema:givenName Nadia
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732715702.45
179 rdf:type schema:Person
180 sg:person.016303637307.54 schema:affiliation grid-institutes:grid.470223.0
181 schema:familyName Casarsa
182 schema:givenName Massimo
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303637307.54
184 rdf:type schema:Person
185 sg:person.016610712707.36 schema:affiliation grid-institutes:grid.470212.2
186 schema:familyName Lucchesi
187 schema:givenName Donatella
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610712707.36
189 rdf:type schema:Person
190 sg:pub.10.1038/s41567-020-01130-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1134930324
191 https://doi.org/10.1038/s41567-020-01130-x
192 rdf:type schema:CreativeWork
193 grid-institutes:None schema:alternateName FNAL, Batavia, USA
194 schema:name FNAL, Batavia, USA
195 rdf:type schema:Organization
196 grid-institutes:grid.184769.5 schema:alternateName LBNL, Berkeley, USA
197 schema:name LBNL, Berkeley, USA
198 rdf:type schema:Organization
199 grid-institutes:grid.470212.2 schema:alternateName INFN Sezione di Padova and University of Padova, Padua, Italy
200 INFN Sezione di Padova, Padua, Italy
201 schema:name INFN Sezione di Padova and University of Padova, Padua, Italy
202 INFN Sezione di Padova, Padua, Italy
203 rdf:type schema:Organization
204 grid-institutes:grid.470222.1 schema:alternateName INFN Sezione di Torino, Turin, Italy
205 schema:name INFN Sezione di Torino, Turin, Italy
206 rdf:type schema:Organization
207 grid-institutes:grid.470223.0 schema:alternateName INFN Sezione di Trieste, Trieste, Italy
208 schema:name INFN Sezione di Trieste, Trieste, Italy
209 rdf:type schema:Organization
210 grid-institutes:grid.7683.a schema:alternateName DESY, Hamburg, Germany
211 schema:name DESY, Hamburg, Germany
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...