Ontology type: schema:ScholarlyArticle
2020-02-25
AUTHORSA. Edwin Prabu, Indranil Bhattacharyya, Partha Ray
ABSTRACTAlthough the link between the stock market and monetary policy is nebulous in the Indian context, it is perceived to be significant in popular perception. Towards explaining this disconnect, we probe the impact of Indian and US monetary policy announcements on disaggregated sectoral stock indices using the identification through heteroscedasticity approach. Our findings suggest differential impact of monetary policy on stocks across sectors. Illustratively, in terms of monetary policy surprises, the impact on the stocks of banking and financial services as well as the realty sector turns out to be significant. In contrast, sectors like media, metal, pharmaceuticals, information technology or fast moving consumer goods are found to be unresponsive. Interestingly, US unconventional monetary policy (quantitative easing) measures are found to have an impact on fast moving consumer goods and the media sector. These findings are attributed to: (1) dominance of the bank lending channel; (2) predominance of public sector vis-a-vis private banks; (3) significant influence of monetary policy on demand for housing and automobiles; (4) relative ineffectiveness of the asset-price channel of monetary transmission; and (5) sector-specific affects arising out of financial liberalisation. More... »
PAGES27-50
http://scigraph.springernature.com/pub.10.1007/s41775-020-00078-2
DOIhttp://dx.doi.org/10.1007/s41775-020-00078-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1125130188
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Commerce, Management, Tourism and Services",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economic Theory",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Econometrics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Banking, Finance and Investment",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Reserve Bank of India, 600001, Chennai, India",
"id": "http://www.grid.ac/institutes/grid.465042.1",
"name": [
"Reserve Bank of India, 600001, Chennai, India"
],
"type": "Organization"
},
"familyName": "Prabu",
"givenName": "A. Edwin",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Reserve Bank of India, 400001, Mumbai, India",
"id": "http://www.grid.ac/institutes/grid.465042.1",
"name": [
"Reserve Bank of India, 400001, Mumbai, India"
],
"type": "Organization"
},
"familyName": "Bhattacharyya",
"givenName": "Indranil",
"id": "sg:person.011150434125.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150434125.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Indian Institute of Management Calcutta, 700104, Kolkata, India",
"id": "http://www.grid.ac/institutes/grid.459606.8",
"name": [
"Indian Institute of Management Calcutta, 700104, Kolkata, India"
],
"type": "Organization"
},
"familyName": "Ray",
"givenName": "Partha",
"id": "sg:person.07546315503.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546315503.34"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00181-012-0657-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046569996",
"https://doi.org/10.1007/s00181-012-0657-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00181-010-0444-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040202850",
"https://doi.org/10.1007/s00181-010-0444-x"
],
"type": "CreativeWork"
}
],
"datePublished": "2020-02-25",
"datePublishedReg": "2020-02-25",
"description": "Although the link between the stock market and monetary policy is nebulous in the Indian context, it is perceived to be significant in popular perception. Towards explaining this disconnect, we probe the impact of Indian and US monetary policy announcements on disaggregated sectoral stock indices using the identification through heteroscedasticity approach. Our findings suggest differential impact of monetary policy on stocks across sectors. Illustratively, in terms of monetary policy surprises, the impact on the stocks of banking and financial services as well as the realty sector turns out to be significant. In contrast, sectors like media, metal, pharmaceuticals, information technology or fast moving consumer goods are found to be unresponsive. Interestingly, US unconventional monetary policy (quantitative easing) measures are found to have an impact on fast moving consumer goods and the media sector. These findings are attributed to: (1) dominance of the bank lending channel; (2) predominance of public sector vis-a-vis private banks; (3) significant influence of monetary policy on demand for housing and automobiles; (4) relative ineffectiveness of the asset-price channel of monetary transmission; and (5) sector-specific affects arising out of financial liberalisation.",
"genre": "article",
"id": "sg:pub.10.1007/s41775-020-00078-2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1027835",
"issn": [
"0019-4670",
"2520-1778"
],
"name": "Indian Economic Review",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "55"
}
],
"keywords": [
"monetary policy",
"stock market",
"US monetary policy announcements",
"unconventional monetary policy measures",
"consumer goods",
"monetary policy surprises",
"asset price channel",
"monetary policy announcements",
"monetary policy measures",
"bank lending channel",
"sectoral stock indices",
"Indian stock market",
"policy surprises",
"lending channel",
"monetary transmission",
"financial liberalisation",
"Realty Sector",
"policy announcements",
"stock indices",
"private banks",
"policy measures",
"financial services",
"public sector",
"Indian context",
"policy",
"information technology",
"sector",
"media sector",
"differential impact",
"market",
"goods",
"stocks",
"popular perception",
"significant influence",
"relative ineffectiveness",
"impact",
"liberalisation",
"announcements",
"banking",
"banks",
"housing",
"findings",
"demand",
"surprise",
"perception",
"services",
"disconnect",
"context",
"ineffectiveness",
"measures",
"automobiles",
"link",
"index",
"dominance",
"technology",
"terms",
"influence",
"approach",
"channels",
"affect",
"pharmaceuticals",
"lies",
"contrast",
"transmission",
"medium",
"identification",
"detail",
"predominance",
"metals"
],
"name": "Impact of monetary policy on the Indian stock market: Does the devil lie in the detail?",
"pagination": "27-50",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1125130188"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s41775-020-00078-2"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s41775-020-00078-2",
"https://app.dimensions.ai/details/publication/pub.1125130188"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_844.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s41775-020-00078-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41775-020-00078-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41775-020-00078-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41775-020-00078-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41775-020-00078-2'
This table displays all metadata directly associated to this object as RDF triples.
169 TRIPLES
22 PREDICATES
100 URIs
86 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s41775-020-00078-2 | schema:about | anzsrc-for:14 |
2 | ″ | ″ | anzsrc-for:1401 |
3 | ″ | ″ | anzsrc-for:1402 |
4 | ″ | ″ | anzsrc-for:1403 |
5 | ″ | ″ | anzsrc-for:15 |
6 | ″ | ″ | anzsrc-for:1502 |
7 | ″ | schema:author | N70cec36e8b9b47d5b9f7077f7a7810a6 |
8 | ″ | schema:citation | sg:pub.10.1007/s00181-010-0444-x |
9 | ″ | ″ | sg:pub.10.1007/s00181-012-0657-2 |
10 | ″ | schema:datePublished | 2020-02-25 |
11 | ″ | schema:datePublishedReg | 2020-02-25 |
12 | ″ | schema:description | Although the link between the stock market and monetary policy is nebulous in the Indian context, it is perceived to be significant in popular perception. Towards explaining this disconnect, we probe the impact of Indian and US monetary policy announcements on disaggregated sectoral stock indices using the identification through heteroscedasticity approach. Our findings suggest differential impact of monetary policy on stocks across sectors. Illustratively, in terms of monetary policy surprises, the impact on the stocks of banking and financial services as well as the realty sector turns out to be significant. In contrast, sectors like media, metal, pharmaceuticals, information technology or fast moving consumer goods are found to be unresponsive. Interestingly, US unconventional monetary policy (quantitative easing) measures are found to have an impact on fast moving consumer goods and the media sector. These findings are attributed to: (1) dominance of the bank lending channel; (2) predominance of public sector vis-a-vis private banks; (3) significant influence of monetary policy on demand for housing and automobiles; (4) relative ineffectiveness of the asset-price channel of monetary transmission; and (5) sector-specific affects arising out of financial liberalisation. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N049c557dd4844d2098f6f6ead7757c39 |
17 | ″ | ″ | N49526837741d4ca2bee11995c249ba44 |
18 | ″ | ″ | sg:journal.1027835 |
19 | ″ | schema:keywords | Indian context |
20 | ″ | ″ | Indian stock market |
21 | ″ | ″ | Realty Sector |
22 | ″ | ″ | US monetary policy announcements |
23 | ″ | ″ | affect |
24 | ″ | ″ | announcements |
25 | ″ | ″ | approach |
26 | ″ | ″ | asset price channel |
27 | ″ | ″ | automobiles |
28 | ″ | ″ | bank lending channel |
29 | ″ | ″ | banking |
30 | ″ | ″ | banks |
31 | ″ | ″ | channels |
32 | ″ | ″ | consumer goods |
33 | ″ | ″ | context |
34 | ″ | ″ | contrast |
35 | ″ | ″ | demand |
36 | ″ | ″ | detail |
37 | ″ | ″ | differential impact |
38 | ″ | ″ | disconnect |
39 | ″ | ″ | dominance |
40 | ″ | ″ | financial liberalisation |
41 | ″ | ″ | financial services |
42 | ″ | ″ | findings |
43 | ″ | ″ | goods |
44 | ″ | ″ | housing |
45 | ″ | ″ | identification |
46 | ″ | ″ | impact |
47 | ″ | ″ | index |
48 | ″ | ″ | ineffectiveness |
49 | ″ | ″ | influence |
50 | ″ | ″ | information technology |
51 | ″ | ″ | lending channel |
52 | ″ | ″ | liberalisation |
53 | ″ | ″ | lies |
54 | ″ | ″ | link |
55 | ″ | ″ | market |
56 | ″ | ″ | measures |
57 | ″ | ″ | media sector |
58 | ″ | ″ | medium |
59 | ″ | ″ | metals |
60 | ″ | ″ | monetary policy |
61 | ″ | ″ | monetary policy announcements |
62 | ″ | ″ | monetary policy measures |
63 | ″ | ″ | monetary policy surprises |
64 | ″ | ″ | monetary transmission |
65 | ″ | ″ | perception |
66 | ″ | ″ | pharmaceuticals |
67 | ″ | ″ | policy |
68 | ″ | ″ | policy announcements |
69 | ″ | ″ | policy measures |
70 | ″ | ″ | policy surprises |
71 | ″ | ″ | popular perception |
72 | ″ | ″ | predominance |
73 | ″ | ″ | private banks |
74 | ″ | ″ | public sector |
75 | ″ | ″ | relative ineffectiveness |
76 | ″ | ″ | sector |
77 | ″ | ″ | sectoral stock indices |
78 | ″ | ″ | services |
79 | ″ | ″ | significant influence |
80 | ″ | ″ | stock indices |
81 | ″ | ″ | stock market |
82 | ″ | ″ | stocks |
83 | ″ | ″ | surprise |
84 | ″ | ″ | technology |
85 | ″ | ″ | terms |
86 | ″ | ″ | transmission |
87 | ″ | ″ | unconventional monetary policy measures |
88 | ″ | schema:name | Impact of monetary policy on the Indian stock market: Does the devil lie in the detail? |
89 | ″ | schema:pagination | 27-50 |
90 | ″ | schema:productId | N0af7418424ad4fd582a3513adfb57ced |
91 | ″ | ″ | N550ae58de13540aba54c89de2c9f0b23 |
92 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1125130188 |
93 | ″ | ″ | https://doi.org/10.1007/s41775-020-00078-2 |
94 | ″ | schema:sdDatePublished | 2022-05-20T07:37 |
95 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
96 | ″ | schema:sdPublisher | N77ff69cf22c9435b96b47244db7deafe |
97 | ″ | schema:url | https://doi.org/10.1007/s41775-020-00078-2 |
98 | ″ | sgo:license | sg:explorer/license/ |
99 | ″ | sgo:sdDataset | articles |
100 | ″ | rdf:type | schema:ScholarlyArticle |
101 | N049c557dd4844d2098f6f6ead7757c39 | schema:volumeNumber | 55 |
102 | ″ | rdf:type | schema:PublicationVolume |
103 | N06fb42ad38864eaabab24faf5b30ea1f | schema:affiliation | grid-institutes:grid.465042.1 |
104 | ″ | schema:familyName | Prabu |
105 | ″ | schema:givenName | A. Edwin |
106 | ″ | rdf:type | schema:Person |
107 | N0af7418424ad4fd582a3513adfb57ced | schema:name | dimensions_id |
108 | ″ | schema:value | pub.1125130188 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | N49526837741d4ca2bee11995c249ba44 | schema:issueNumber | 1 |
111 | ″ | rdf:type | schema:PublicationIssue |
112 | N550ae58de13540aba54c89de2c9f0b23 | schema:name | doi |
113 | ″ | schema:value | 10.1007/s41775-020-00078-2 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | N70cec36e8b9b47d5b9f7077f7a7810a6 | rdf:first | N06fb42ad38864eaabab24faf5b30ea1f |
116 | ″ | rdf:rest | Nfe97e8953bf54bc29528daa76109b237 |
117 | N741097846df94e77a258bdc18bae05a2 | rdf:first | sg:person.07546315503.34 |
118 | ″ | rdf:rest | rdf:nil |
119 | N77ff69cf22c9435b96b47244db7deafe | schema:name | Springer Nature - SN SciGraph project |
120 | ″ | rdf:type | schema:Organization |
121 | Nfe97e8953bf54bc29528daa76109b237 | rdf:first | sg:person.011150434125.58 |
122 | ″ | rdf:rest | N741097846df94e77a258bdc18bae05a2 |
123 | anzsrc-for:14 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Economics |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | anzsrc-for:1401 | schema:inDefinedTermSet | anzsrc-for: |
127 | ″ | schema:name | Economic Theory |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | anzsrc-for:1402 | schema:inDefinedTermSet | anzsrc-for: |
130 | ″ | schema:name | Applied Economics |
131 | ″ | rdf:type | schema:DefinedTerm |
132 | anzsrc-for:1403 | schema:inDefinedTermSet | anzsrc-for: |
133 | ″ | schema:name | Econometrics |
134 | ″ | rdf:type | schema:DefinedTerm |
135 | anzsrc-for:15 | schema:inDefinedTermSet | anzsrc-for: |
136 | ″ | schema:name | Commerce, Management, Tourism and Services |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | anzsrc-for:1502 | schema:inDefinedTermSet | anzsrc-for: |
139 | ″ | schema:name | Banking, Finance and Investment |
140 | ″ | rdf:type | schema:DefinedTerm |
141 | sg:journal.1027835 | schema:issn | 0019-4670 |
142 | ″ | ″ | 2520-1778 |
143 | ″ | schema:name | Indian Economic Review |
144 | ″ | schema:publisher | Springer Nature |
145 | ″ | rdf:type | schema:Periodical |
146 | sg:person.011150434125.58 | schema:affiliation | grid-institutes:grid.465042.1 |
147 | ″ | schema:familyName | Bhattacharyya |
148 | ″ | schema:givenName | Indranil |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150434125.58 |
150 | ″ | rdf:type | schema:Person |
151 | sg:person.07546315503.34 | schema:affiliation | grid-institutes:grid.459606.8 |
152 | ″ | schema:familyName | Ray |
153 | ″ | schema:givenName | Partha |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546315503.34 |
155 | ″ | rdf:type | schema:Person |
156 | sg:pub.10.1007/s00181-010-0444-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040202850 |
157 | ″ | ″ | https://doi.org/10.1007/s00181-010-0444-x |
158 | ″ | rdf:type | schema:CreativeWork |
159 | sg:pub.10.1007/s00181-012-0657-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046569996 |
160 | ″ | ″ | https://doi.org/10.1007/s00181-012-0657-2 |
161 | ″ | rdf:type | schema:CreativeWork |
162 | grid-institutes:grid.459606.8 | schema:alternateName | Indian Institute of Management Calcutta, 700104, Kolkata, India |
163 | ″ | schema:name | Indian Institute of Management Calcutta, 700104, Kolkata, India |
164 | ″ | rdf:type | schema:Organization |
165 | grid-institutes:grid.465042.1 | schema:alternateName | Reserve Bank of India, 400001, Mumbai, India |
166 | ″ | ″ | Reserve Bank of India, 600001, Chennai, India |
167 | ″ | schema:name | Reserve Bank of India, 400001, Mumbai, India |
168 | ″ | ″ | Reserve Bank of India, 600001, Chennai, India |
169 | ″ | rdf:type | schema:Organization |