The Index of Ideality of Correlation: QSAR Model of Acute Toxicity for Zebrafish (Danio rerio) Embryo View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Andrey Andreevich Toropov, Alla Petrovna Toropova, Emilio Benfenati

ABSTRACT

Acute aquatic toxicity is a complex phenomenon. Experimental measurement of endpoints related to the phenomenon is expensive and takes time. However, data on the above endpoints are needed to solve practical tasks of ecology in cooperation with industry and agriculture control. Optimal descriptors calculated with simplified molecular input-line entry system were used to build up quantitative structure–activity relationships for acute toxicity of zebrafish embryo, expressed via negative decimal logarithm of molar concentration of the dose leading to death in 50% organisms (pLC50). The index of ideality of correlation has been used to improve the predictive potential of the model. Mechanistic interpretation of the model in terms of promoters (molecular alerts) of increase or decrease of the endpoint is suggested. The average statistical characteristics of the model for the external validation sets are the following: average correlation coefficient equal to 0.697; and average root mean squared error equal to 0.93. The predictive potential of the model has been confirmed with three random splits into the training and validation sets. The Monte Carlo method is used to build up predictive models for zebrafish toxicity;The CORAL software available on the Internet used for corresponding calculations;The structural alerts related to the toxicity are suggested;The index of ideality of correlation applied to improve CORAL models. The Monte Carlo method is used to build up predictive models for zebrafish toxicity; The CORAL software available on the Internet used for corresponding calculations; The structural alerts related to the toxicity are suggested; The index of ideality of correlation applied to improve CORAL models. More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41742-019-00183-y

DOI

http://dx.doi.org/10.1007/s41742-019-00183-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112987951


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toropov", 
        "givenName": "Andrey Andreevich", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toropova", 
        "givenName": "Alla Petrovna", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benfenati", 
        "givenName": "Emilio", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2013.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007792060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2011.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017505617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmech.2015.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019923672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2015.04.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025480475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.reprotox.2011.06.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029267709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2016.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034761335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ardp.201600268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035914881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.22953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035996608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12302-015-0046-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039700446", 
          "https://doi.org/10.1186/s12302-015-0046-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12302-015-0046-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039700446", 
          "https://doi.org/10.1186/s12302-015-0046-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11224-016-0776-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042483865", 
          "https://doi.org/10.1007/s11224-016-0776-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11224-016-0776-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042483865", 
          "https://doi.org/10.1007/s11224-016-0776-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2014.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046192834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1062936x.2013.842930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046307471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2016.08.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047526221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jes.2014.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049521977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aquatox.2009.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051924977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12951-016-0217-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053602512", 
          "https://doi.org/10.1186/s12951-016-0217-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12951-016-0217-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053602512", 
          "https://doi.org/10.1186/s12951-016-0217-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0042-119725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057383330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920009787522197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069175808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/15701808113106660085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069202665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2532051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078307973", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.01.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083743799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1389200218666170301105916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084390690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jes.2017.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085388119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mrgentox.2017.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085419842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.etap.2017.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085564824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejps.2017.05.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085709169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11224-017-0997-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090668916", 
          "https://doi.org/10.1007/s11224-017-0997-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11224-017-0997-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090668916", 
          "https://doi.org/10.1007/s11224-017-0997-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1389200218666171010124733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092246519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tiv.2018.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103841518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2018.07.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105478380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15376516.2018.1506851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105941151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15376516.2018.1506851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105941151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15376516.2018.1506851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105941151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15376516.2018.1506851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105941151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1062936x.2018.1564067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112358644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1062936x.2018.1564067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112358644"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Acute aquatic toxicity is a complex phenomenon. Experimental measurement of endpoints related to the phenomenon is expensive and takes time. However, data on the above endpoints are needed to solve practical tasks of ecology in cooperation with industry and agriculture control. Optimal descriptors calculated with simplified molecular input-line entry system were used to build up quantitative structure\u2013activity relationships for acute toxicity of zebrafish embryo, expressed via negative decimal logarithm of molar concentration of the dose leading to death in 50% organisms (pLC50). The index of ideality of correlation has been used to improve the predictive potential of the model. Mechanistic interpretation of the model in terms of promoters (molecular alerts) of increase or decrease of the endpoint is suggested. The average statistical characteristics of the model for the external validation sets are the following: average correlation coefficient equal to 0.697; and average root mean squared error equal to 0.93. The predictive potential of the model has been confirmed with three random splits into the training and validation sets. The Monte Carlo method is used to build up predictive models for zebrafish toxicity;The CORAL software available on the Internet used for corresponding calculations;The structural alerts related to the toxicity are suggested;The index of ideality of correlation applied to improve CORAL models. The Monte Carlo method is used to build up predictive models for zebrafish toxicity; The CORAL software available on the Internet used for corresponding calculations; The structural alerts related to the toxicity are suggested; The index of ideality of correlation applied to improve CORAL models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41742-019-00183-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047339", 
        "issn": [
          "1735-6865", 
          "2008-2304"
        ], 
        "name": "International Journal of Environmental Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "The Index of Ideality of Correlation: QSAR Model of Acute Toxicity for Zebrafish (Danio rerio) Embryo", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "964b6ee3a0c15d857aaa763885bfb4f4d3acdfeca9ddbf01717c084920c4d5cf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41742-019-00183-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112987951"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41742-019-00183-y", 
      "https://app.dimensions.ai/details/publication/pub.1112987951"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117118_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41742-019-00183-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41742-019-00183-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41742-019-00183-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41742-019-00183-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41742-019-00183-y'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41742-019-00183-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N70123a3a3a2b411cbeb11c1213b95757
4 schema:citation sg:pub.10.1007/s11224-016-0776-z
5 sg:pub.10.1007/s11224-017-0997-9
6 sg:pub.10.1186/s12302-015-0046-5
7 sg:pub.10.1186/s12951-016-0217-6
8 https://app.dimensions.ai/details/publication/pub.1078307973
9 https://doi.org/10.1002/ardp.201600268
10 https://doi.org/10.1002/jcc.22953
11 https://doi.org/10.1016/j.aquatox.2009.12.008
12 https://doi.org/10.1016/j.chemolab.2011.03.011
13 https://doi.org/10.1016/j.chemolab.2014.09.013
14 https://doi.org/10.1016/j.chemolab.2016.02.008
15 https://doi.org/10.1016/j.chemosphere.2016.08.079
16 https://doi.org/10.1016/j.chemosphere.2018.07.051
17 https://doi.org/10.1016/j.ecolmodel.2013.12.016
18 https://doi.org/10.1016/j.ejmech.2015.07.012
19 https://doi.org/10.1016/j.ejps.2017.05.061
20 https://doi.org/10.1016/j.etap.2017.05.011
21 https://doi.org/10.1016/j.jes.2014.11.008
22 https://doi.org/10.1016/j.jes.2017.05.008
23 https://doi.org/10.1016/j.molliq.2015.04.049
24 https://doi.org/10.1016/j.mrgentox.2017.05.008
25 https://doi.org/10.1016/j.reprotox.2011.06.121
26 https://doi.org/10.1016/j.scitotenv.2017.01.198
27 https://doi.org/10.1016/j.tiv.2018.05.005
28 https://doi.org/10.1055/s-0042-119725
29 https://doi.org/10.1080/1062936x.2013.842930
30 https://doi.org/10.1080/1062936x.2018.1564067
31 https://doi.org/10.1080/15376516.2018.1506851
32 https://doi.org/10.2174/138920009787522197
33 https://doi.org/10.2174/1389200218666170301105916
34 https://doi.org/10.2174/1389200218666171010124733
35 https://doi.org/10.2174/15701808113106660085
36 https://doi.org/10.2307/2532051
37 schema:datePublished 2019-04
38 schema:datePublishedReg 2019-04-01
39 schema:description Acute aquatic toxicity is a complex phenomenon. Experimental measurement of endpoints related to the phenomenon is expensive and takes time. However, data on the above endpoints are needed to solve practical tasks of ecology in cooperation with industry and agriculture control. Optimal descriptors calculated with simplified molecular input-line entry system were used to build up quantitative structure–activity relationships for acute toxicity of zebrafish embryo, expressed via negative decimal logarithm of molar concentration of the dose leading to death in 50% organisms (pLC50). The index of ideality of correlation has been used to improve the predictive potential of the model. Mechanistic interpretation of the model in terms of promoters (molecular alerts) of increase or decrease of the endpoint is suggested. The average statistical characteristics of the model for the external validation sets are the following: average correlation coefficient equal to 0.697; and average root mean squared error equal to 0.93. The predictive potential of the model has been confirmed with three random splits into the training and validation sets. The Monte Carlo method is used to build up predictive models for zebrafish toxicity;The CORAL software available on the Internet used for corresponding calculations;The structural alerts related to the toxicity are suggested;The index of ideality of correlation applied to improve CORAL models. The Monte Carlo method is used to build up predictive models for zebrafish toxicity; The CORAL software available on the Internet used for corresponding calculations; The structural alerts related to the toxicity are suggested; The index of ideality of correlation applied to improve CORAL models.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N3a4a7f91735442659327be646dfafcad
44 Nd472c23d2dd94928b5563adbcf657bc1
45 sg:journal.1047339
46 schema:name The Index of Ideality of Correlation: QSAR Model of Acute Toxicity for Zebrafish (Danio rerio) Embryo
47 schema:pagination 1-8
48 schema:productId N06c406239797486bb85583810f10c58e
49 N7d1e1b62032949bfa53c7c7d3571a81f
50 Nf99de8c5d5524437b970c1c373086794
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112987951
52 https://doi.org/10.1007/s41742-019-00183-y
53 schema:sdDatePublished 2019-04-11T14:20
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N94685af08c064ef9a788e5986895814a
56 schema:url https://link.springer.com/10.1007%2Fs41742-019-00183-y
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N06c406239797486bb85583810f10c58e schema:name readcube_id
61 schema:value 964b6ee3a0c15d857aaa763885bfb4f4d3acdfeca9ddbf01717c084920c4d5cf
62 rdf:type schema:PropertyValue
63 N3a4a7f91735442659327be646dfafcad schema:issueNumber 2
64 rdf:type schema:PublicationIssue
65 N44858ed405a94f57bcde22d0e99843be rdf:first N818b7876670542b0b0b9cdd882328f3d
66 rdf:rest rdf:nil
67 N492d1612250541c5aa89f2125317b946 rdf:first Nd2ff2e9cc005472ab52c80b1e743403f
68 rdf:rest N44858ed405a94f57bcde22d0e99843be
69 N70123a3a3a2b411cbeb11c1213b95757 rdf:first Nc146ab5c425c4db4bb5aafabbdca5516
70 rdf:rest N492d1612250541c5aa89f2125317b946
71 N7d1e1b62032949bfa53c7c7d3571a81f schema:name doi
72 schema:value 10.1007/s41742-019-00183-y
73 rdf:type schema:PropertyValue
74 N818b7876670542b0b0b9cdd882328f3d schema:affiliation Nf9433311841c49a89c92db210abac5e4
75 schema:familyName Benfenati
76 schema:givenName Emilio
77 rdf:type schema:Person
78 N94685af08c064ef9a788e5986895814a schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nafbd5d0ef19b4a02a112dced87ace6ed schema:name Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy
81 rdf:type schema:Organization
82 Nc146ab5c425c4db4bb5aafabbdca5516 schema:affiliation Nafbd5d0ef19b4a02a112dced87ace6ed
83 schema:familyName Toropov
84 schema:givenName Andrey Andreevich
85 rdf:type schema:Person
86 Nd2ff2e9cc005472ab52c80b1e743403f schema:affiliation Nf5e889cc50d94cb29fe655bc3a4160f7
87 schema:familyName Toropova
88 schema:givenName Alla Petrovna
89 rdf:type schema:Person
90 Nd472c23d2dd94928b5563adbcf657bc1 schema:volumeNumber 13
91 rdf:type schema:PublicationVolume
92 Nf5e889cc50d94cb29fe655bc3a4160f7 schema:name Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy
93 rdf:type schema:Organization
94 Nf9433311841c49a89c92db210abac5e4 schema:name Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156, Milan, Italy
95 rdf:type schema:Organization
96 Nf99de8c5d5524437b970c1c373086794 schema:name dimensions_id
97 schema:value pub.1112987951
98 rdf:type schema:PropertyValue
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
103 schema:name Statistics
104 rdf:type schema:DefinedTerm
105 sg:journal.1047339 schema:issn 1735-6865
106 2008-2304
107 schema:name International Journal of Environmental Research
108 rdf:type schema:Periodical
109 sg:pub.10.1007/s11224-016-0776-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042483865
110 https://doi.org/10.1007/s11224-016-0776-z
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11224-017-0997-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090668916
113 https://doi.org/10.1007/s11224-017-0997-9
114 rdf:type schema:CreativeWork
115 sg:pub.10.1186/s12302-015-0046-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039700446
116 https://doi.org/10.1186/s12302-015-0046-5
117 rdf:type schema:CreativeWork
118 sg:pub.10.1186/s12951-016-0217-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053602512
119 https://doi.org/10.1186/s12951-016-0217-6
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1078307973 schema:CreativeWork
122 https://doi.org/10.1002/ardp.201600268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035914881
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/jcc.22953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035996608
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.aquatox.2009.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051924977
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.chemolab.2011.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017505617
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.chemolab.2014.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046192834
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.chemolab.2016.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034761335
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.chemosphere.2016.08.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047526221
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.chemosphere.2018.07.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105478380
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ecolmodel.2013.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007792060
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ejmech.2015.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019923672
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ejps.2017.05.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085709169
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.etap.2017.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085564824
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jes.2014.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049521977
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jes.2017.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085388119
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.molliq.2015.04.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025480475
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.mrgentox.2017.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085419842
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.reprotox.2011.06.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029267709
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.scitotenv.2017.01.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083743799
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.tiv.2018.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103841518
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1055/s-0042-119725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057383330
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/1062936x.2013.842930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046307471
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/1062936x.2018.1564067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112358644
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/15376516.2018.1506851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105941151
167 rdf:type schema:CreativeWork
168 https://doi.org/10.2174/138920009787522197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069175808
169 rdf:type schema:CreativeWork
170 https://doi.org/10.2174/1389200218666170301105916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084390690
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2174/1389200218666171010124733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092246519
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2174/15701808113106660085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069202665
175 rdf:type schema:CreativeWork
176 https://doi.org/10.2307/2532051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977481
177 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...