Performance Evaluation and Substrate Removal Kinetics of an Anaerobic Packed-Bed Biofilm Reactor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Siddhartha Pandey, Sudipta Sarkar

ABSTRACT

The present study is based on the investigation of process kinetics of a two-phase anaerobic packed-bed biofilm reactor (AnPBR) with PVA gel beads as biocarrier treating synthetic wastewater-containing molasses. During the steady-state conditions, the reactor system was attributed to 89% of COD removal efficiency. For the comparison of substrate loading removal rate with the prediction of Grau’s second-order model and Stover–Kincannon substrate removal model, AnPBR reactor was run under different hydraulic retention times (HRT) and organic loads. The experimental data obtained from the steady-state conditions showed that Stover–Kincannon model and Grau’s second-order model were the most appropriate models for the proper description of the reactor. Both the Grau’s second-order model and Stover–Kincannon model gave very high correlation coefficients of 98.36% and 98.37%, respectively, for the overall reactor system. Thus, both of these models can be used efficiently for the prediction of behavior and to design the AnPBR reactors. Grau second order model gave a high correlation coefficient of 98.36%Stover–Kincannon model also gave high correlation coefficients of 98.37%Both the models can be used to design the AnPBR reactorsEfficient prediction of behavior of AnPBR reactors can be done by these models Grau second order model gave a high correlation coefficient of 98.36% Stover–Kincannon model also gave high correlation coefficients of 98.37% Both the models can be used to design the AnPBR reactors Efficient prediction of behavior of AnPBR reactors can be done by these models More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41742-019-00168-x

DOI

http://dx.doi.org/10.1007/s41742-019-00168-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111456083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Civil Engineering, VSB Engineering College, 639111, Karur, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pandey", 
        "givenName": "Siddhartha", 
        "id": "sg:person.013243376755.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243376755.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Roorkee", 
          "id": "https://www.grid.ac/institutes/grid.19003.3b", 
          "name": [
            "Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarkar", 
        "givenName": "Sudipta", 
        "id": "sg:person.01365753515.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365753515.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.desal.2005.03.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001599664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2005.03.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001599664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10826068.2015.1084635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002358673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00411655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005586920", 
          "https://doi.org/10.1007/bf00411655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260160607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006979215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2007.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007160750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260221008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009836597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.12.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013708265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11274-009-0197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014741773", 
          "https://doi.org/10.1007/s11274-009-0197-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11274-009-0197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014741773", 
          "https://doi.org/10.1007/s11274-009-0197-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10643389109388424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016278157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jece.2016.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022673435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2007.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023016980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2004.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024736381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025094717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2007.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027926432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2011.08.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028802218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2013.06.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029392219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2006.11.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030275817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procbio.2005.03.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030415259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procbio.2005.03.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030415259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.05.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030692129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2008.08.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036160078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037383996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.05.088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037519226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01496395.2015.1061007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039239953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procbio.2004.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039250741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0032-9592(02)00047-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040180530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10934529409376165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040352244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-3199(94)90197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041301546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-3199(94)90197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041301546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-010-0456-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041987507", 
          "https://doi.org/10.1007/s00449-010-0456-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-009-0387-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042046676", 
          "https://doi.org/10.1007/s00449-009-0387-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-009-0387-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042046676", 
          "https://doi.org/10.1007/s00449-009-0387-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-009-0387-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042046676", 
          "https://doi.org/10.1007/s00449-009-0387-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(75)90169-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043647672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(75)90169-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043647672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2007.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044745472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2006.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048338906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.11.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049234886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2007.05.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050860859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2004.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053704547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-21-1-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060371747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijs.0.02880-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060384062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2015.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069147876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082777902", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jece.2017.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083740947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2017.06.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090293727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2017.09.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092063242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2017.09.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092063242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2017.09.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092063242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2017.10.256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092405984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2017.10.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092828520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soilbio.2017.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100289565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ceat.201700467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100483805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2018.02.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101243830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2018.06.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105128533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2018.08.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106414730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2018.09.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107389704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11157-018-9484-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107406637", 
          "https://doi.org/10.1007/s11157-018-9484-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The present study is based on the investigation of process kinetics of a two-phase anaerobic packed-bed biofilm reactor (AnPBR) with PVA gel beads as biocarrier treating synthetic wastewater-containing molasses. During the steady-state conditions, the reactor system was attributed to 89% of COD removal efficiency. For the comparison of substrate loading removal rate with the prediction of Grau\u2019s second-order model and Stover\u2013Kincannon substrate removal model, AnPBR reactor was run under different hydraulic retention times (HRT) and organic loads. The experimental data obtained from the steady-state conditions showed that Stover\u2013Kincannon model and Grau\u2019s second-order model were the most appropriate models for the proper description of the reactor. Both the Grau\u2019s second-order model and Stover\u2013Kincannon model gave very high correlation coefficients of 98.36% and 98.37%, respectively, for the overall reactor system. Thus, both of these models can be used efficiently for the prediction of behavior and to design the AnPBR reactors. Grau second order model gave a high correlation coefficient of 98.36%Stover\u2013Kincannon model also gave high correlation coefficients of 98.37%Both the models can be used to design the AnPBR reactorsEfficient prediction of behavior of AnPBR reactors can be done by these models Grau second order model gave a high correlation coefficient of 98.36% Stover\u2013Kincannon model also gave high correlation coefficients of 98.37% Both the models can be used to design the AnPBR reactors Efficient prediction of behavior of AnPBR reactors can be done by these models", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41742-019-00168-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047339", 
        "issn": [
          "1735-6865", 
          "2008-2304"
        ], 
        "name": "International Journal of Environmental Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Performance Evaluation and Substrate Removal Kinetics of an Anaerobic Packed-Bed Biofilm Reactor", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b7383987e140e4c70682f5e4dd679b33654857c60ffcca6aac594dd5732e9550"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41742-019-00168-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111456083"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41742-019-00168-x", 
      "https://app.dimensions.ai/details/publication/pub.1111456083"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117087_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41742-019-00168-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41742-019-00168-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41742-019-00168-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41742-019-00168-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41742-019-00168-x'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      78 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41742-019-00168-x schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author N05cce8751f634207a4175f8f1a6fcd45
4 schema:citation sg:pub.10.1007/bf00411655
5 sg:pub.10.1007/s00449-009-0387-9
6 sg:pub.10.1007/s00449-010-0456-0
7 sg:pub.10.1007/s11157-018-9484-z
8 sg:pub.10.1007/s11274-009-0197-x
9 https://app.dimensions.ai/details/publication/pub.1082777902
10 https://doi.org/10.1002/bit.260160607
11 https://doi.org/10.1002/bit.260221008
12 https://doi.org/10.1002/ceat.201700467
13 https://doi.org/10.1016/0043-1354(75)90169-4
14 https://doi.org/10.1016/0360-3199(94)90197-x
15 https://doi.org/10.1016/j.biortech.2004.12.007
16 https://doi.org/10.1016/j.biortech.2006.11.038
17 https://doi.org/10.1016/j.biortech.2007.01.057
18 https://doi.org/10.1016/j.biortech.2007.02.037
19 https://doi.org/10.1016/j.biortech.2007.05.053
20 https://doi.org/10.1016/j.biortech.2008.01.009
21 https://doi.org/10.1016/j.biortech.2008.04.034
22 https://doi.org/10.1016/j.biortech.2008.12.058
23 https://doi.org/10.1016/j.biortech.2012.05.088
24 https://doi.org/10.1016/j.biortech.2012.05.139
25 https://doi.org/10.1016/j.biortech.2012.11.147
26 https://doi.org/10.1016/j.biortech.2013.06.030
27 https://doi.org/10.1016/j.biortech.2017.06.152
28 https://doi.org/10.1016/j.biortech.2017.09.211
29 https://doi.org/10.1016/j.biortech.2018.02.123
30 https://doi.org/10.1016/j.biosystemseng.2004.09.002
31 https://doi.org/10.1016/j.cej.2006.04.006
32 https://doi.org/10.1016/j.cej.2008.08.036
33 https://doi.org/10.1016/j.desal.2005.03.044
34 https://doi.org/10.1016/j.ijhydene.2018.09.066
35 https://doi.org/10.1016/j.jclepro.2017.10.256
36 https://doi.org/10.1016/j.jece.2016.02.020
37 https://doi.org/10.1016/j.jece.2017.02.013
38 https://doi.org/10.1016/j.jenvman.2017.10.038
39 https://doi.org/10.1016/j.jhazmat.2007.09.034
40 https://doi.org/10.1016/j.procbio.2004.04.014
41 https://doi.org/10.1016/j.procbio.2005.03.062
42 https://doi.org/10.1016/j.renene.2007.06.006
43 https://doi.org/10.1016/j.scitotenv.2018.08.404
44 https://doi.org/10.1016/j.soilbio.2017.10.034
45 https://doi.org/10.1016/j.watres.2011.08.059
46 https://doi.org/10.1016/j.watres.2018.06.054
47 https://doi.org/10.1016/s0032-9592(02)00047-x
48 https://doi.org/10.1080/01496395.2015.1061007
49 https://doi.org/10.1080/10643389109388424
50 https://doi.org/10.1080/10826068.2015.1084635
51 https://doi.org/10.1080/10934529409376165
52 https://doi.org/10.1099/00221287-21-1-40
53 https://doi.org/10.1099/ijs.0.02880-0
54 https://doi.org/10.2166/wst.2015.631
55 schema:datePublished 2019-04
56 schema:datePublishedReg 2019-04-01
57 schema:description The present study is based on the investigation of process kinetics of a two-phase anaerobic packed-bed biofilm reactor (AnPBR) with PVA gel beads as biocarrier treating synthetic wastewater-containing molasses. During the steady-state conditions, the reactor system was attributed to 89% of COD removal efficiency. For the comparison of substrate loading removal rate with the prediction of Grau’s second-order model and Stover–Kincannon substrate removal model, AnPBR reactor was run under different hydraulic retention times (HRT) and organic loads. The experimental data obtained from the steady-state conditions showed that Stover–Kincannon model and Grau’s second-order model were the most appropriate models for the proper description of the reactor. Both the Grau’s second-order model and Stover–Kincannon model gave very high correlation coefficients of 98.36% and 98.37%, respectively, for the overall reactor system. Thus, both of these models can be used efficiently for the prediction of behavior and to design the AnPBR reactors. Grau second order model gave a high correlation coefficient of 98.36%Stover–Kincannon model also gave high correlation coefficients of 98.37%Both the models can be used to design the AnPBR reactorsEfficient prediction of behavior of AnPBR reactors can be done by these models Grau second order model gave a high correlation coefficient of 98.36% Stover–Kincannon model also gave high correlation coefficients of 98.37% Both the models can be used to design the AnPBR reactors Efficient prediction of behavior of AnPBR reactors can be done by these models
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf N17d0e7b095a64b6cb0156ee9a42d7a02
62 N334285b974c649b6ba1cb03ce7d818b5
63 sg:journal.1047339
64 schema:name Performance Evaluation and Substrate Removal Kinetics of an Anaerobic Packed-Bed Biofilm Reactor
65 schema:pagination 1-11
66 schema:productId N5257013c50d24234a39f5e727999ed11
67 N5f27e785e3f94a01bb984da93f8e610c
68 N69634a39e0004f0282bdb7483c736497
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111456083
70 https://doi.org/10.1007/s41742-019-00168-x
71 schema:sdDatePublished 2019-04-11T14:16
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N279fa847819742f6992d36e2e9dbd7c4
74 schema:url https://link.springer.com/10.1007%2Fs41742-019-00168-x
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N05cce8751f634207a4175f8f1a6fcd45 rdf:first sg:person.013243376755.25
79 rdf:rest N4f211127aaf44f888c16110654e92eda
80 N17d0e7b095a64b6cb0156ee9a42d7a02 schema:issueNumber 2
81 rdf:type schema:PublicationIssue
82 N279fa847819742f6992d36e2e9dbd7c4 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N334285b974c649b6ba1cb03ce7d818b5 schema:volumeNumber 13
85 rdf:type schema:PublicationVolume
86 N45011e25a87f40daa543121cdeff8f67 schema:name Department of Civil Engineering, VSB Engineering College, 639111, Karur, Tamilnadu, India
87 rdf:type schema:Organization
88 N4f211127aaf44f888c16110654e92eda rdf:first sg:person.01365753515.70
89 rdf:rest rdf:nil
90 N5257013c50d24234a39f5e727999ed11 schema:name dimensions_id
91 schema:value pub.1111456083
92 rdf:type schema:PropertyValue
93 N5f27e785e3f94a01bb984da93f8e610c schema:name readcube_id
94 schema:value b7383987e140e4c70682f5e4dd679b33654857c60ffcca6aac594dd5732e9550
95 rdf:type schema:PropertyValue
96 N69634a39e0004f0282bdb7483c736497 schema:name doi
97 schema:value 10.1007/s41742-019-00168-x
98 rdf:type schema:PropertyValue
99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
100 schema:name Engineering
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
103 schema:name Environmental Engineering
104 rdf:type schema:DefinedTerm
105 sg:journal.1047339 schema:issn 1735-6865
106 2008-2304
107 schema:name International Journal of Environmental Research
108 rdf:type schema:Periodical
109 sg:person.013243376755.25 schema:affiliation N45011e25a87f40daa543121cdeff8f67
110 schema:familyName Pandey
111 schema:givenName Siddhartha
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243376755.25
113 rdf:type schema:Person
114 sg:person.01365753515.70 schema:affiliation https://www.grid.ac/institutes/grid.19003.3b
115 schema:familyName Sarkar
116 schema:givenName Sudipta
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365753515.70
118 rdf:type schema:Person
119 sg:pub.10.1007/bf00411655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005586920
120 https://doi.org/10.1007/bf00411655
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00449-009-0387-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042046676
123 https://doi.org/10.1007/s00449-009-0387-9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00449-010-0456-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041987507
126 https://doi.org/10.1007/s00449-010-0456-0
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11157-018-9484-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107406637
129 https://doi.org/10.1007/s11157-018-9484-z
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11274-009-0197-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014741773
132 https://doi.org/10.1007/s11274-009-0197-x
133 rdf:type schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1082777902 schema:CreativeWork
135 https://doi.org/10.1002/bit.260160607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979215
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/bit.260221008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009836597
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/ceat.201700467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100483805
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0043-1354(75)90169-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043647672
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0360-3199(94)90197-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041301546
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.biortech.2004.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053704547
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.biortech.2006.11.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030275817
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.biortech.2007.01.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023016980
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.biortech.2007.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044745472
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.biortech.2007.05.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050860859
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.biortech.2008.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025094717
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.biortech.2008.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037383996
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.biortech.2008.12.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013708265
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.biortech.2012.05.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037519226
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.biortech.2012.05.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030692129
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.biortech.2012.11.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049234886
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.biortech.2013.06.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029392219
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.biortech.2017.06.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090293727
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.biortech.2017.09.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092063242
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.biortech.2018.02.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101243830
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.biosystemseng.2004.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024736381
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.cej.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048338906
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.cej.2008.08.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036160078
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.desal.2005.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001599664
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.ijhydene.2018.09.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107389704
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jclepro.2017.10.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092405984
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jece.2016.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022673435
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jece.2017.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083740947
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jenvman.2017.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092828520
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jhazmat.2007.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027926432
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.procbio.2004.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039250741
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.procbio.2005.03.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030415259
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.renene.2007.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007160750
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.scitotenv.2018.08.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106414730
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.soilbio.2017.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100289565
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.watres.2011.08.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028802218
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.watres.2018.06.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105128533
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0032-9592(02)00047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040180530
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1080/01496395.2015.1061007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039239953
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1080/10643389109388424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016278157
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1080/10826068.2015.1084635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002358673
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1080/10934529409376165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040352244
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1099/00221287-21-1-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060371747
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1099/ijs.0.02880-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060384062
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2166/wst.2015.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069147876
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.19003.3b schema:alternateName Indian Institute of Technology Roorkee
226 schema:name Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...