Economic effects and greenhouse gas emissions of small-scale hydropower projects in Japan: evidence from a 47-prefecture interregional input–output analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09-25

AUTHORS

Tatsuki Ueda, Yoji Kunimitsu, Yoshifumi Ishikawa, Mitsuru Okiyama, Suminori Tokunaga

ABSTRACT

This study investigates the economic effects (output, value added and employment) and greenhouse gas (GHG) emissions of small-scale hydropower [comprising construction and operation/maintenance (O&M) stages] using a 47-prefecture interregional input–output analysis. We evaluated both backward and income linkage effects using the Miyazawa model, and consequently demonstrated that: (1) with respect to output and employment, the backward linkage effects of the O&M stage are smaller than the construction stage, while the opposite is true for the income linkage effects. This may be mainly attributed to high value-added ratios of the O&M sectors, and implies relatively lower inputs and labor are required for running hydropower facilities than for constructing them. (2) Income linkage effects with respect to all the parameters are dispersed over several prefectures due partly to the income redistribution effect. (3) Analyses of life-cycle GHG emissions in physical terms reveal that the smaller the hydropower plant, the larger the GHG emissions per unit electricity production. This may be because more machinery must be used per unit electricity production at smaller plants, causing more emissions from both construction and maintenance works. (4) Assuming small-scale hydropower generation is conducted across 1602 sites in place of the general (including fossil fuel) power sector, Japan’s national GHG emissions are expected to be moderated by 0.145%, of which 55% is due to the technological effect and the remaining portion is through the electricity-saving effect from higher prices for small-scale hydropower. More... »

PAGES

1-27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41685-018-0098-9

DOI

http://dx.doi.org/10.1007/s41685-018-0098-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107226301


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Rural Engineering", 
          "id": "https://www.grid.ac/institutes/grid.482722.9", 
          "name": [
            "Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, 305-8609, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueda", 
        "givenName": "Tatsuki", 
        "id": "sg:person.07476233313.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476233313.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Rural Engineering", 
          "id": "https://www.grid.ac/institutes/grid.482722.9", 
          "name": [
            "Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, 305-8609, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kunimitsu", 
        "givenName": "Yoji", 
        "id": "sg:person.015520756651.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520756651.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanzan University", 
          "id": "https://www.grid.ac/institutes/grid.444385.a", 
          "name": [
            "Faculty of Policy Studies, Nanzan University, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishikawa", 
        "givenName": "Yoshifumi", 
        "id": "sg:person.013542325241.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013542325241.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Reitaku University", 
          "id": "https://www.grid.ac/institutes/grid.444056.7", 
          "name": [
            "Faculty of Economics and Business Administration, Reitaku University, Kashiwa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okiyama", 
        "givenName": "Mitsuru", 
        "id": "sg:person.016615337327.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615337327.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Reitaku University", 
          "id": "https://www.grid.ac/institutes/grid.444056.7", 
          "name": [
            "Faculty of Economics and Business Administration, Reitaku University, Kashiwa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tokunaga", 
        "givenName": "Suminori", 
        "id": "sg:person.016501775615.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016501775615.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.6090/jarq.47.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004869229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-016-0025-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006040826", 
          "https://doi.org/10.1007/s10640-016-0025-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-016-0025-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006040826", 
          "https://doi.org/10.1007/s10640-016-0025-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10333-014-0432-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007340496", 
          "https://doi.org/10.1007/s10333-014-0432-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3775/jie.94.1397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009997665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2457/srs.34.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034031695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2015.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036626250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2004.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050543592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procir.2015.02.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051866905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11107/papaios.24.1_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061831405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1541/ieejjournal.126.222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067807557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2457/srs.42.799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070759571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41685-017-0044-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090354165", 
          "https://doi.org/10.1007/s41685-017-0044-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41685-017-0044-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090354165", 
          "https://doi.org/10.1007/s41685-017-0044-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511626982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098728173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-10-6493-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099742883", 
          "https://doi.org/10.1007/978-981-10-6493-7_9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-25", 
    "datePublishedReg": "2018-09-25", 
    "description": "This study investigates the economic effects (output, value added and employment) and greenhouse gas (GHG) emissions of small-scale hydropower [comprising construction and operation/maintenance (O&M) stages] using a 47-prefecture interregional input\u2013output analysis. We evaluated both backward and income linkage effects using the Miyazawa model, and consequently demonstrated that: (1) with respect to output and employment, the backward linkage effects of the O&M stage are smaller than the construction stage, while the opposite is true for the income linkage effects. This may be mainly attributed to high value-added ratios of the O&M sectors, and implies relatively lower inputs and labor are required for running hydropower facilities than for constructing them. (2) Income linkage effects with respect to all the parameters are dispersed over several prefectures due partly to the income redistribution effect. (3) Analyses of life-cycle GHG emissions in physical terms reveal that the smaller the hydropower plant, the larger the GHG emissions per unit electricity production. This may be because more machinery must be used per unit electricity production at smaller plants, causing more emissions from both construction and maintenance works. (4) Assuming small-scale hydropower generation is conducted across 1602 sites in place of the general (including fossil fuel) power sector, Japan\u2019s national GHG emissions are expected to be moderated by 0.145%, of which 55% is due to the technological effect and the remaining portion is through the electricity-saving effect from higher prices for small-scale hydropower.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41685-018-0098-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6536557", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290406", 
        "issn": [
          "2509-7946", 
          "2509-7954"
        ], 
        "name": "Asia-Pacific Journal of Regional Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Economic effects and greenhouse gas emissions of small-scale hydropower projects in Japan: evidence from a 47-prefecture interregional input\u2013output analysis", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "746be363db3d7349e06850877b35d00746381479042ac89b4dc0ffc753225a88"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41685-018-0098-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107226301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41685-018-0098-9", 
      "https://app.dimensions.ai/details/publication/pub.1107226301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41685-018-0098-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41685-018-0098-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41685-018-0098-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41685-018-0098-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41685-018-0098-9'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      38 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41685-018-0098-9 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N1b419925434247dd893f520a56ea8852
4 schema:citation sg:pub.10.1007/978-981-10-6493-7_9
5 sg:pub.10.1007/s10333-014-0432-4
6 sg:pub.10.1007/s10640-016-0025-3
7 sg:pub.10.1007/s41685-017-0044-2
8 https://doi.org/10.1016/j.energy.2004.07.020
9 https://doi.org/10.1016/j.jclepro.2015.03.011
10 https://doi.org/10.1016/j.procir.2015.02.160
11 https://doi.org/10.1017/cbo9780511626982
12 https://doi.org/10.11107/papaios.24.1_1
13 https://doi.org/10.1541/ieejjournal.126.222
14 https://doi.org/10.2457/srs.34.139
15 https://doi.org/10.2457/srs.42.799
16 https://doi.org/10.3775/jie.94.1397
17 https://doi.org/10.6090/jarq.47.135
18 schema:datePublished 2018-09-25
19 schema:datePublishedReg 2018-09-25
20 schema:description This study investigates the economic effects (output, value added and employment) and greenhouse gas (GHG) emissions of small-scale hydropower [comprising construction and operation/maintenance (O&M) stages] using a 47-prefecture interregional input–output analysis. We evaluated both backward and income linkage effects using the Miyazawa model, and consequently demonstrated that: (1) with respect to output and employment, the backward linkage effects of the O&M stage are smaller than the construction stage, while the opposite is true for the income linkage effects. This may be mainly attributed to high value-added ratios of the O&M sectors, and implies relatively lower inputs and labor are required for running hydropower facilities than for constructing them. (2) Income linkage effects with respect to all the parameters are dispersed over several prefectures due partly to the income redistribution effect. (3) Analyses of life-cycle GHG emissions in physical terms reveal that the smaller the hydropower plant, the larger the GHG emissions per unit electricity production. This may be because more machinery must be used per unit electricity production at smaller plants, causing more emissions from both construction and maintenance works. (4) Assuming small-scale hydropower generation is conducted across 1602 sites in place of the general (including fossil fuel) power sector, Japan’s national GHG emissions are expected to be moderated by 0.145%, of which 55% is due to the technological effect and the remaining portion is through the electricity-saving effect from higher prices for small-scale hydropower.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf sg:journal.1290406
25 schema:name Economic effects and greenhouse gas emissions of small-scale hydropower projects in Japan: evidence from a 47-prefecture interregional input–output analysis
26 schema:pagination 1-27
27 schema:productId N5edca8f5fbaf458abe4100d699f4462a
28 N87931c31ebbf4dd294d7bc818f66ecd7
29 N94994c7a82c9436080ba2cd5a05daae1
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107226301
31 https://doi.org/10.1007/s41685-018-0098-9
32 schema:sdDatePublished 2019-04-10T18:25
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N8a4673bec2da46bbbf985e4d73c57286
35 schema:url https://link.springer.com/10.1007%2Fs41685-018-0098-9
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1b419925434247dd893f520a56ea8852 rdf:first sg:person.07476233313.56
40 rdf:rest Ned84ef30c6224a04afc0dff2a6203bf1
41 N3f3dc890b8f24dfb8daf3c91a5395041 rdf:first sg:person.016501775615.87
42 rdf:rest rdf:nil
43 N5edca8f5fbaf458abe4100d699f4462a schema:name readcube_id
44 schema:value 746be363db3d7349e06850877b35d00746381479042ac89b4dc0ffc753225a88
45 rdf:type schema:PropertyValue
46 N87931c31ebbf4dd294d7bc818f66ecd7 schema:name dimensions_id
47 schema:value pub.1107226301
48 rdf:type schema:PropertyValue
49 N8a4673bec2da46bbbf985e4d73c57286 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N925e47dc646f495aae64d900ae3e8c62 rdf:first sg:person.013542325241.72
52 rdf:rest Ne80c6cb6f60f4eda90f186dd79bd7490
53 N94994c7a82c9436080ba2cd5a05daae1 schema:name doi
54 schema:value 10.1007/s41685-018-0098-9
55 rdf:type schema:PropertyValue
56 Ne80c6cb6f60f4eda90f186dd79bd7490 rdf:first sg:person.016615337327.33
57 rdf:rest N3f3dc890b8f24dfb8daf3c91a5395041
58 Ned84ef30c6224a04afc0dff2a6203bf1 rdf:first sg:person.015520756651.88
59 rdf:rest N925e47dc646f495aae64d900ae3e8c62
60 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
61 schema:name Economics
62 rdf:type schema:DefinedTerm
63 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
64 schema:name Applied Economics
65 rdf:type schema:DefinedTerm
66 sg:grant.6536557 http://pending.schema.org/fundedItem sg:pub.10.1007/s41685-018-0098-9
67 rdf:type schema:MonetaryGrant
68 sg:journal.1290406 schema:issn 2509-7946
69 2509-7954
70 schema:name Asia-Pacific Journal of Regional Science
71 rdf:type schema:Periodical
72 sg:person.013542325241.72 schema:affiliation https://www.grid.ac/institutes/grid.444385.a
73 schema:familyName Ishikawa
74 schema:givenName Yoshifumi
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013542325241.72
76 rdf:type schema:Person
77 sg:person.015520756651.88 schema:affiliation https://www.grid.ac/institutes/grid.482722.9
78 schema:familyName Kunimitsu
79 schema:givenName Yoji
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520756651.88
81 rdf:type schema:Person
82 sg:person.016501775615.87 schema:affiliation https://www.grid.ac/institutes/grid.444056.7
83 schema:familyName Tokunaga
84 schema:givenName Suminori
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016501775615.87
86 rdf:type schema:Person
87 sg:person.016615337327.33 schema:affiliation https://www.grid.ac/institutes/grid.444056.7
88 schema:familyName Okiyama
89 schema:givenName Mitsuru
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615337327.33
91 rdf:type schema:Person
92 sg:person.07476233313.56 schema:affiliation https://www.grid.ac/institutes/grid.482722.9
93 schema:familyName Ueda
94 schema:givenName Tatsuki
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476233313.56
96 rdf:type schema:Person
97 sg:pub.10.1007/978-981-10-6493-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099742883
98 https://doi.org/10.1007/978-981-10-6493-7_9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10333-014-0432-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007340496
101 https://doi.org/10.1007/s10333-014-0432-4
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10640-016-0025-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006040826
104 https://doi.org/10.1007/s10640-016-0025-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s41685-017-0044-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090354165
107 https://doi.org/10.1007/s41685-017-0044-2
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.energy.2004.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050543592
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jclepro.2015.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036626250
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.procir.2015.02.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051866905
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1017/cbo9780511626982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098728173
116 rdf:type schema:CreativeWork
117 https://doi.org/10.11107/papaios.24.1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061831405
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1541/ieejjournal.126.222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067807557
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2457/srs.34.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034031695
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2457/srs.42.799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070759571
124 rdf:type schema:CreativeWork
125 https://doi.org/10.3775/jie.94.1397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009997665
126 rdf:type schema:CreativeWork
127 https://doi.org/10.6090/jarq.47.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004869229
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.444056.7 schema:alternateName Reitaku University
130 schema:name Faculty of Economics and Business Administration, Reitaku University, Kashiwa, Japan
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.444385.a schema:alternateName Nanzan University
133 schema:name Faculty of Policy Studies, Nanzan University, Nagoya, Japan
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.482722.9 schema:alternateName Institute for Rural Engineering
136 schema:name Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, 305-8609, Tsukuba, Ibaraki, Japan
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...