Sweat-Based in Vitro Diagnostics (IVD): From Sample Collection to Point-of-Care Testing (POCT) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-02

AUTHORS

Mehenur Sarwar, Pablo Rodriguez, Chen-zhong Li

ABSTRACT

Sweat-based diagnostics offer an exciting avenue to noninvasively monitor analytes which had previously only been available through painful blood draws. Sweat is enriched with physiologically valuable information, and recent proteomic studies have identified numerous critical analytes which have highly correlated levels in blood, interstitial fluid and sweat. However, usage of sweat for health monitoring has not been studied extensively due to the substantial challenge of assembling a composite clinic-ready device. Recent advances in soft electronics have made this goal realizable, as these devices can perform electronic or optical monitoring on a flexible substrate using small volumes of liquid. While this field is still in its infancy, this review examines the physiological composition of sweat, various improvements in material science that improve sensor design, existing FDA approvals, methods of extracting sweat and comparisons to blood-based tests. Furthermore, this review assesses the critical challenges which must be overcome for this type of technology to make it out of research laboratories and into continuous clinical use. We believe that once properly harnessed, sweat-based diagnostics can provide patients a painless monitoring tool which can be customized to track a wide variety of medical conditions from the comfort of a patient’s own home. More... »

PAGES

1-9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41664-019-00097-w

DOI

http://dx.doi.org/10.1007/s41664-019-00097-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113200226


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Florida International University", 
          "id": "https://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering, Florida International University, 33174, Miami, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarwar", 
        "givenName": "Mehenur", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida International University", 
          "id": "https://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering, Florida International University, 33174, Miami, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodriguez", 
        "givenName": "Pablo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida International University", 
          "id": "https://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering, Florida International University, 33174, Miami, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chen-zhong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jim.2006.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002798341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/pme.10.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004066209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/shk.0b013e318254d41a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006333623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/shk.0b013e318254d41a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006333623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1250169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008343987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1250169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008343987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6673-3-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009456569", 
          "https://doi.org/10.1186/1745-6673-3-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s150203236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009738131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201404446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012737070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201202405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019511258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2015.08.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019735997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-445x.2000.02058.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023485887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2133.1985.tb00080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026846158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.1969.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040385714", 
          "https://doi.org/10.1038/jid.1969.147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jdermsci.2013.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040937729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elecom.2014.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044188927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045102271", 
          "https://doi.org/10.1038/nature16521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprot.2017.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047050467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprot.2017.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047050467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5an02387d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049900626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2013.284986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051113684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adhm.201601355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054034156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2741/s94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070919827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5339/jlghs.2015.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072775188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physrev.1954.34.2.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075502215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3238/arztebl.2009.0032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077920932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpregu.1983.245.2.r203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082009263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1701740114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084867342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7lc00364a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090339650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/mi8090265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091400422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplegacy.1944.141.4.575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100032273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iedm.2017.8268413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100681495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.201700424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101889394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.201700424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101889394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201707442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103450509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201707442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103450509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.201800128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104146059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-76573-0_18-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105007419", 
          "https://doi.org/10.1007/978-3-319-76573-0_18-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aar2904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105738258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201801368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105964636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-33565-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107771907", 
          "https://doi.org/10.1038/s41598-018-33565-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c8tb02331j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107821151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c8tb02331j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107821151"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-02", 
    "datePublishedReg": "2019-04-02", 
    "description": "Sweat-based diagnostics offer an exciting avenue to noninvasively monitor analytes which had previously only been available through painful blood draws. Sweat is enriched with physiologically valuable information, and recent proteomic studies have identified numerous critical analytes which have highly correlated levels in blood, interstitial fluid and sweat. However, usage of sweat for health monitoring has not been studied extensively due to the substantial challenge of assembling a composite clinic-ready device. Recent advances in soft electronics have made this goal realizable, as these devices can perform electronic or optical monitoring on a flexible substrate using small volumes of liquid. While this field is still in its infancy, this review examines the physiological composition of sweat, various improvements in material science that improve sensor design, existing FDA approvals, methods of extracting sweat and comparisons to blood-based tests. Furthermore, this review assesses the critical challenges which must be overcome for this type of technology to make it out of research laboratories and into continuous clinical use. We believe that once properly harnessed, sweat-based diagnostics can provide patients a painless monitoring tool which can be customized to track a wide variety of medical conditions from the comfort of a patient\u2019s own home.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41664-019-00097-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7056592", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7056556", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290430", 
        "issn": [
          "2096-241X", 
          "2509-4696"
        ], 
        "name": "Journal of Analysis and Testing", 
        "type": "Periodical"
      }
    ], 
    "name": "Sweat-Based in Vitro Diagnostics (IVD): From Sample Collection to Point-of-Care Testing (POCT)", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41664-019-00097-w"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "acfed1aaec91aece6f5db7cb24bfc7c703ce348ae474ac750cd194d298960752"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113200226"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41664-019-00097-w", 
      "https://app.dimensions.ai/details/publication/pub.1113200226"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56164_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41664-019-00097-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41664-019-00097-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41664-019-00097-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41664-019-00097-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41664-019-00097-w'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      61 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41664-019-00097-w schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author Nddc6cedf4f8a4eb4ac2c38e5dead7de4
4 schema:citation sg:pub.10.1007/978-3-319-76573-0_18-1
5 sg:pub.10.1038/jid.1969.147
6 sg:pub.10.1038/nature16521
7 sg:pub.10.1038/s41598-018-33565-x
8 sg:pub.10.1186/1745-6673-3-4
9 https://doi.org/10.1001/jama.2013.284986
10 https://doi.org/10.1002/adfm.201202405
11 https://doi.org/10.1002/adhm.201601355
12 https://doi.org/10.1002/adma.201404446
13 https://doi.org/10.1002/adma.201707442
14 https://doi.org/10.1002/adma.201801368
15 https://doi.org/10.1002/elan.201800128
16 https://doi.org/10.1002/elps.201700424
17 https://doi.org/10.1016/j.elecom.2014.11.024
18 https://doi.org/10.1016/j.jdermsci.2013.06.005
19 https://doi.org/10.1016/j.jim.2006.07.011
20 https://doi.org/10.1016/j.jprot.2017.01.005
21 https://doi.org/10.1016/j.snb.2015.08.073
22 https://doi.org/10.1039/c5an02387d
23 https://doi.org/10.1039/c7lc00364a
24 https://doi.org/10.1039/c8tb02331j
25 https://doi.org/10.1073/pnas.1701740114
26 https://doi.org/10.1097/shk.0b013e318254d41a
27 https://doi.org/10.1109/iedm.2017.8268413
28 https://doi.org/10.1111/j.1365-2133.1985.tb00080.x
29 https://doi.org/10.1111/j.1469-445x.2000.02058.x
30 https://doi.org/10.1126/sciadv.aar2904
31 https://doi.org/10.1126/science.1250169
32 https://doi.org/10.1152/ajplegacy.1944.141.4.575
33 https://doi.org/10.1152/ajpregu.1983.245.2.r203
34 https://doi.org/10.1152/physrev.1954.34.2.202
35 https://doi.org/10.2217/pme.10.53
36 https://doi.org/10.2741/s94
37 https://doi.org/10.3238/arztebl.2009.0032
38 https://doi.org/10.3390/mi8090265
39 https://doi.org/10.3390/s150203236
40 https://doi.org/10.5339/jlghs.2015.5
41 schema:datePublished 2019-04-02
42 schema:datePublishedReg 2019-04-02
43 schema:description Sweat-based diagnostics offer an exciting avenue to noninvasively monitor analytes which had previously only been available through painful blood draws. Sweat is enriched with physiologically valuable information, and recent proteomic studies have identified numerous critical analytes which have highly correlated levels in blood, interstitial fluid and sweat. However, usage of sweat for health monitoring has not been studied extensively due to the substantial challenge of assembling a composite clinic-ready device. Recent advances in soft electronics have made this goal realizable, as these devices can perform electronic or optical monitoring on a flexible substrate using small volumes of liquid. While this field is still in its infancy, this review examines the physiological composition of sweat, various improvements in material science that improve sensor design, existing FDA approvals, methods of extracting sweat and comparisons to blood-based tests. Furthermore, this review assesses the critical challenges which must be overcome for this type of technology to make it out of research laboratories and into continuous clinical use. We believe that once properly harnessed, sweat-based diagnostics can provide patients a painless monitoring tool which can be customized to track a wide variety of medical conditions from the comfort of a patient’s own home.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1290430
48 schema:name Sweat-Based in Vitro Diagnostics (IVD): From Sample Collection to Point-of-Care Testing (POCT)
49 schema:pagination 1-9
50 schema:productId N297c118d84c04001b714eb841aed055d
51 N7d2a973638e142cebe09ed692a3bd501
52 Neeb004ffb195469f8f27b0ac23923980
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113200226
54 https://doi.org/10.1007/s41664-019-00097-w
55 schema:sdDatePublished 2019-04-15T09:14
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N0e4c231968144895948413f09779eace
58 schema:url https://link.springer.com/10.1007%2Fs41664-019-00097-w
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N07906edcacbe46408d91cf46475c01a2 rdf:first N150064af47684053bb0f35c3c74da92d
63 rdf:rest N6d805cc6ed43478cbd8ce5540d0d81f0
64 N0e4c231968144895948413f09779eace schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N150064af47684053bb0f35c3c74da92d schema:affiliation https://www.grid.ac/institutes/grid.65456.34
67 schema:familyName Rodriguez
68 schema:givenName Pablo
69 rdf:type schema:Person
70 N297c118d84c04001b714eb841aed055d schema:name doi
71 schema:value 10.1007/s41664-019-00097-w
72 rdf:type schema:PropertyValue
73 N66f71c236d2a407ea309ace1f71ad69c schema:affiliation https://www.grid.ac/institutes/grid.65456.34
74 schema:familyName Li
75 schema:givenName Chen-zhong
76 rdf:type schema:Person
77 N6d805cc6ed43478cbd8ce5540d0d81f0 rdf:first N66f71c236d2a407ea309ace1f71ad69c
78 rdf:rest rdf:nil
79 N7d2a973638e142cebe09ed692a3bd501 schema:name dimensions_id
80 schema:value pub.1113200226
81 rdf:type schema:PropertyValue
82 Nc63bdde27ca04e0893ffdb2fa791921a schema:affiliation https://www.grid.ac/institutes/grid.65456.34
83 schema:familyName Sarwar
84 schema:givenName Mehenur
85 rdf:type schema:Person
86 Nddc6cedf4f8a4eb4ac2c38e5dead7de4 rdf:first Nc63bdde27ca04e0893ffdb2fa791921a
87 rdf:rest N07906edcacbe46408d91cf46475c01a2
88 Neeb004ffb195469f8f27b0ac23923980 schema:name readcube_id
89 schema:value acfed1aaec91aece6f5db7cb24bfc7c703ce348ae474ac750cd194d298960752
90 rdf:type schema:PropertyValue
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
95 schema:name Biomedical Engineering
96 rdf:type schema:DefinedTerm
97 sg:grant.7056556 http://pending.schema.org/fundedItem sg:pub.10.1007/s41664-019-00097-w
98 rdf:type schema:MonetaryGrant
99 sg:grant.7056592 http://pending.schema.org/fundedItem sg:pub.10.1007/s41664-019-00097-w
100 rdf:type schema:MonetaryGrant
101 sg:journal.1290430 schema:issn 2096-241X
102 2509-4696
103 schema:name Journal of Analysis and Testing
104 rdf:type schema:Periodical
105 sg:pub.10.1007/978-3-319-76573-0_18-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105007419
106 https://doi.org/10.1007/978-3-319-76573-0_18-1
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/jid.1969.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040385714
109 https://doi.org/10.1038/jid.1969.147
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature16521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045102271
112 https://doi.org/10.1038/nature16521
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/s41598-018-33565-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107771907
115 https://doi.org/10.1038/s41598-018-33565-x
116 rdf:type schema:CreativeWork
117 sg:pub.10.1186/1745-6673-3-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009456569
118 https://doi.org/10.1186/1745-6673-3-4
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1001/jama.2013.284986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051113684
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/adfm.201202405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019511258
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/adhm.201601355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054034156
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/adma.201404446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012737070
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/adma.201707442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103450509
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/adma.201801368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105964636
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/elan.201800128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104146059
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/elps.201700424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101889394
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.elecom.2014.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044188927
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jdermsci.2013.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040937729
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jim.2006.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002798341
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jprot.2017.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047050467
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.snb.2015.08.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019735997
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1039/c5an02387d schema:sameAs https://app.dimensions.ai/details/publication/pub.1049900626
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1039/c7lc00364a schema:sameAs https://app.dimensions.ai/details/publication/pub.1090339650
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1039/c8tb02331j schema:sameAs https://app.dimensions.ai/details/publication/pub.1107821151
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1073/pnas.1701740114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084867342
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1097/shk.0b013e318254d41a schema:sameAs https://app.dimensions.ai/details/publication/pub.1006333623
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/iedm.2017.8268413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100681495
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1365-2133.1985.tb00080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026846158
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/j.1469-445x.2000.02058.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023485887
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/sciadv.aar2904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105738258
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.1250169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008343987
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1152/ajplegacy.1944.141.4.575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100032273
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1152/ajpregu.1983.245.2.r203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082009263
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1152/physrev.1954.34.2.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075502215
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2217/pme.10.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004066209
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2741/s94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070919827
175 rdf:type schema:CreativeWork
176 https://doi.org/10.3238/arztebl.2009.0032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077920932
177 rdf:type schema:CreativeWork
178 https://doi.org/10.3390/mi8090265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091400422
179 rdf:type schema:CreativeWork
180 https://doi.org/10.3390/s150203236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009738131
181 rdf:type schema:CreativeWork
182 https://doi.org/10.5339/jlghs.2015.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072775188
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.65456.34 schema:alternateName Florida International University
185 schema:name Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering, Florida International University, 33174, Miami, USA
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...