Securing Data Center Against Power Attacks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-05

AUTHORS

Rajesh JS, Chidhambaranathan Rajamanikkam, Koushik Chakraborty, Sanghamitra Roy

ABSTRACT

Modern data centers employ complex and specialized power management architectures in the pursuit of energy and thermal efficiency. Interestingly, this rising complexity has exposed a new attack surface in an already vulnerable environment. In this work, we uncover a potent threat stemming from a compromised power management module in the hypervisor to motivate the need to safeguard the data centers from power attacks. HyperAttack—an internal power attack—maliciously increases the data center power consumption by more than 70%, while minimally affecting the service level agreement. We propose a machine learning-based secure architecture, SCALE, to detect anomalous power consumption behavior and prevent against power outages due to HyperAttack escalations. SCALE delivers 99% classification accuracy, with a maximum false positive rate of 3.8%. More... »

PAGES

177-188

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41635-019-0064-7

DOI

http://dx.doi.org/10.1007/s41635-019-0064-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111935137


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA", 
          "id": "http://www.grid.ac/institutes/grid.53857.3c", 
          "name": [
            "USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "JS", 
        "givenName": "Rajesh", 
        "id": "sg:person.010525434435.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010525434435.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA", 
          "id": "http://www.grid.ac/institutes/grid.53857.3c", 
          "name": [
            "USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajamanikkam", 
        "givenName": "Chidhambaranathan", 
        "id": "sg:person.07752034573.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07752034573.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA", 
          "id": "http://www.grid.ac/institutes/grid.53857.3c", 
          "name": [
            "USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborty", 
        "givenName": "Koushik", 
        "id": "sg:person.011242200473.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011242200473.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA", 
          "id": "http://www.grid.ac/institutes/grid.53857.3c", 
          "name": [
            "USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Sanghamitra", 
        "id": "sg:person.07717124652.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717124652.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10586-011-0177-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008220212", 
          "https://doi.org/10.1007/s10586-011-0177-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-05", 
    "datePublishedReg": "2019-02-05", 
    "description": "Modern data centers employ complex and specialized power management architectures in the pursuit of energy and thermal efficiency. Interestingly, this rising complexity has exposed a new attack surface in an already vulnerable environment. In this work, we uncover a potent threat stemming from a compromised power management module in the hypervisor to motivate the need to safeguard the data centers from power attacks. HyperAttack\u2014an internal power attack\u2014maliciously increases the data center power consumption by more than 70%, while minimally affecting the service level agreement. We propose a machine learning-based secure architecture, SCALE, to detect anomalous power consumption behavior and prevent against power outages due to HyperAttack escalations. SCALE delivers 99% classification accuracy, with a maximum false positive rate of 3.8%.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41635-019-0064-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3850363", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3486498", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3850029", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3481257", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290439", 
        "issn": [
          "2509-3428", 
          "2509-3436"
        ], 
        "name": "Journal of Hardware and Systems Security", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "data centers", 
      "power attacks", 
      "Service Level Agreements", 
      "new attack surfaces", 
      "modern data centers", 
      "data center power consumption", 
      "maximum false positive rate", 
      "power consumption behavior", 
      "secure architecture", 
      "attack surface", 
      "Level Agreements", 
      "false positive rate", 
      "management module", 
      "power management module", 
      "classification accuracy", 
      "power management", 
      "power consumption", 
      "pursuit of energy", 
      "attacks", 
      "power outages", 
      "potent threat", 
      "positive rate", 
      "hypervisor", 
      "architecture", 
      "vulnerable environment", 
      "complexity", 
      "module", 
      "outages", 
      "accuracy", 
      "environment", 
      "consumption behavior", 
      "efficiency", 
      "threat", 
      "work", 
      "management", 
      "need", 
      "consumption", 
      "pursuit", 
      "center", 
      "scale", 
      "behavior", 
      "prevents", 
      "rate", 
      "energy", 
      "escalation", 
      "agreement", 
      "surface", 
      "thermal efficiency", 
      "specialized power management", 
      "HyperAttack", 
      "internal power attack", 
      "center power consumption", 
      "machine learning-based secure architecture", 
      "learning-based secure architecture", 
      "anomalous power consumption behavior", 
      "HyperAttack escalations"
    ], 
    "name": "Securing Data Center Against Power Attacks", 
    "pagination": "177-188", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111935137"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41635-019-0064-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41635-019-0064-7", 
      "https://app.dimensions.ai/details/publication/pub.1111935137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_800.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41635-019-0064-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41635-019-0064-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41635-019-0064-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41635-019-0064-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41635-019-0064-7'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      22 PREDICATES      82 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41635-019-0064-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N26f7f6d94e9748618e89e40f6412c3a2
4 schema:citation sg:pub.10.1007/s10586-011-0177-4
5 schema:datePublished 2019-02-05
6 schema:datePublishedReg 2019-02-05
7 schema:description Modern data centers employ complex and specialized power management architectures in the pursuit of energy and thermal efficiency. Interestingly, this rising complexity has exposed a new attack surface in an already vulnerable environment. In this work, we uncover a potent threat stemming from a compromised power management module in the hypervisor to motivate the need to safeguard the data centers from power attacks. HyperAttack—an internal power attack—maliciously increases the data center power consumption by more than 70%, while minimally affecting the service level agreement. We propose a machine learning-based secure architecture, SCALE, to detect anomalous power consumption behavior and prevent against power outages due to HyperAttack escalations. SCALE delivers 99% classification accuracy, with a maximum false positive rate of 3.8%.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N51373c7a23ae40c0ab3fe1e1dda4d931
12 Nbcc13eb425df4cfebef824fd419c8aed
13 sg:journal.1290439
14 schema:keywords HyperAttack
15 HyperAttack escalations
16 Level Agreements
17 Service Level Agreements
18 accuracy
19 agreement
20 anomalous power consumption behavior
21 architecture
22 attack surface
23 attacks
24 behavior
25 center
26 center power consumption
27 classification accuracy
28 complexity
29 consumption
30 consumption behavior
31 data center power consumption
32 data centers
33 efficiency
34 energy
35 environment
36 escalation
37 false positive rate
38 hypervisor
39 internal power attack
40 learning-based secure architecture
41 machine learning-based secure architecture
42 management
43 management module
44 maximum false positive rate
45 modern data centers
46 module
47 need
48 new attack surfaces
49 outages
50 positive rate
51 potent threat
52 power attacks
53 power consumption
54 power consumption behavior
55 power management
56 power management module
57 power outages
58 prevents
59 pursuit
60 pursuit of energy
61 rate
62 scale
63 secure architecture
64 specialized power management
65 surface
66 thermal efficiency
67 threat
68 vulnerable environment
69 work
70 schema:name Securing Data Center Against Power Attacks
71 schema:pagination 177-188
72 schema:productId N1714745f3cfb466f8c98ac31b3fd4b7a
73 N40fe55903d254af0842e72e9ee3151f7
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111935137
75 https://doi.org/10.1007/s41635-019-0064-7
76 schema:sdDatePublished 2021-11-01T18:34
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N788abbe653104def9b24d878674d7522
79 schema:url https://doi.org/10.1007/s41635-019-0064-7
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N03026fe4f86749eabbf453835fe104de rdf:first sg:person.07717124652.47
84 rdf:rest rdf:nil
85 N1714745f3cfb466f8c98ac31b3fd4b7a schema:name doi
86 schema:value 10.1007/s41635-019-0064-7
87 rdf:type schema:PropertyValue
88 N26f7f6d94e9748618e89e40f6412c3a2 rdf:first sg:person.010525434435.33
89 rdf:rest N46e161f9b7624cb6a7ab004db82144ea
90 N40fe55903d254af0842e72e9ee3151f7 schema:name dimensions_id
91 schema:value pub.1111935137
92 rdf:type schema:PropertyValue
93 N46e161f9b7624cb6a7ab004db82144ea rdf:first sg:person.07752034573.45
94 rdf:rest Ne483bc711d2845449f17a02bb2515a36
95 N51373c7a23ae40c0ab3fe1e1dda4d931 schema:issueNumber 2
96 rdf:type schema:PublicationIssue
97 N788abbe653104def9b24d878674d7522 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nbcc13eb425df4cfebef824fd419c8aed schema:volumeNumber 3
100 rdf:type schema:PublicationVolume
101 Ne483bc711d2845449f17a02bb2515a36 rdf:first sg:person.011242200473.17
102 rdf:rest N03026fe4f86749eabbf453835fe104de
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
107 schema:name Artificial Intelligence and Image Processing
108 rdf:type schema:DefinedTerm
109 sg:grant.3481257 http://pending.schema.org/fundedItem sg:pub.10.1007/s41635-019-0064-7
110 rdf:type schema:MonetaryGrant
111 sg:grant.3486498 http://pending.schema.org/fundedItem sg:pub.10.1007/s41635-019-0064-7
112 rdf:type schema:MonetaryGrant
113 sg:grant.3850029 http://pending.schema.org/fundedItem sg:pub.10.1007/s41635-019-0064-7
114 rdf:type schema:MonetaryGrant
115 sg:grant.3850363 http://pending.schema.org/fundedItem sg:pub.10.1007/s41635-019-0064-7
116 rdf:type schema:MonetaryGrant
117 sg:journal.1290439 schema:issn 2509-3428
118 2509-3436
119 schema:name Journal of Hardware and Systems Security
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.010525434435.33 schema:affiliation grid-institutes:grid.53857.3c
123 schema:familyName JS
124 schema:givenName Rajesh
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010525434435.33
126 rdf:type schema:Person
127 sg:person.011242200473.17 schema:affiliation grid-institutes:grid.53857.3c
128 schema:familyName Chakraborty
129 schema:givenName Koushik
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011242200473.17
131 rdf:type schema:Person
132 sg:person.07717124652.47 schema:affiliation grid-institutes:grid.53857.3c
133 schema:familyName Roy
134 schema:givenName Sanghamitra
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717124652.47
136 rdf:type schema:Person
137 sg:person.07752034573.45 schema:affiliation grid-institutes:grid.53857.3c
138 schema:familyName Rajamanikkam
139 schema:givenName Chidhambaranathan
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07752034573.45
141 rdf:type schema:Person
142 sg:pub.10.1007/s10586-011-0177-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008220212
143 https://doi.org/10.1007/s10586-011-0177-4
144 rdf:type schema:CreativeWork
145 grid-institutes:grid.53857.3c schema:alternateName USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA
146 schema:name USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University, Logan, UT, USA
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...