Hardware-Layer Intelligence Collection for Smart Grid Embedded Systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-04

AUTHORS

Charalambos Konstantinou, Michail Maniatakos

ABSTRACT

Smart grids include a variety of microprocessor-based embedded systems, interconnected with communication technologies. In this interaction, hardware is the lower level of abstraction. Insecure and unprotected hardware design of smart grid devices enable system operation compromise, eventually leading to undesirable and often severe consequences. In this paper, we discuss how the hardware of grid equipment can be used to collect intelligence utilized towards beneficial or malicious purposes. We consider different access scenarios and attacker capabilities as well as equipment location in the grid. The outcome of “hardware hacking” is examined in both device and grid operation levels. Finally, we present hardware hardening techniques, aiming to make components attack-resistant and reduce their vulnerability surface. More... »

PAGES

132-146

References to SciGraph publications

  • 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems in ADVANCES IN CRYPTOLOGY — CRYPTO ’96
  • 2011. Tamper Detection in ENCYCLOPEDIA OF CRYPTOGRAPHY AND SECURITY
  • 2013-07-17. Smart Meter in SMART GRIDS
  • 2000. Physical Security Devices for Computer Subsystems: A Survey of Attacks and Defenses in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS — CHES 2000
  • 2006. Read-Proof Hardware from Protective Coatings in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2006
  • 1999-12-16. Differential Power Analysis in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • 1998. Low cost attacks on tamper resistant devices in SECURITY PROTOCOLS
  • 2013-10-08. Measuring the Cost of Cybercrime in THE ECONOMICS OF INFORMATION SECURITY AND PRIVACY
  • 2008-01-01. Gnort: High Performance Network Intrusion Detection Using Graphics Processors in RECENT ADVANCES IN INTRUSION DETECTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41635-018-0063-0

    DOI

    http://dx.doi.org/10.1007/s41635-018-0063-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111153201


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computer Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "FAMU-FSU College of Engineering, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.427253.5", 
              "name": [
                "FAMU-FSU College of Engineering, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konstantinou", 
            "givenName": "Charalambos", 
            "id": "sg:person.013072112173.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013072112173.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Cyber Security, New York University Abu Dhabi, Abu Dhabi, UAE", 
              "id": "http://www.grid.ac/institutes/grid.440573.1", 
              "name": [
                "Center for Cyber Security, New York University Abu Dhabi, Abu Dhabi, UAE"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maniatakos", 
            "givenName": "Michail", 
            "id": "sg:person.014465053173.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465053173.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/11894063_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005869106", 
              "https://doi.org/10.1007/11894063_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44499-8_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045299661", 
              "https://doi.org/10.1007/3-540-44499-8_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-5210-1_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029066497", 
              "https://doi.org/10.1007/978-1-4471-5210-1_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-5906-5_229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019430115", 
              "https://doi.org/10.1007/978-1-4419-5906-5_229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0028165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018518035", 
              "https://doi.org/10.1007/bfb0028165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87403-4_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045982525", 
              "https://doi.org/10.1007/978-3-540-87403-4_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68697-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047972271", 
              "https://doi.org/10.1007/3-540-68697-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-39498-0_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007448725", 
              "https://doi.org/10.1007/978-3-642-39498-0_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48405-1_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005179729", 
              "https://doi.org/10.1007/3-540-48405-1_25"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-04", 
        "datePublishedReg": "2019-01-04", 
        "description": "Smart grids include a variety of microprocessor-based embedded systems, interconnected with communication technologies. In this interaction, hardware is the lower level of abstraction. Insecure and unprotected hardware design of smart grid devices enable system operation compromise, eventually leading to undesirable and often severe consequences. In this paper, we discuss how the hardware of grid equipment can be used to collect intelligence utilized towards beneficial or malicious purposes. We consider different access scenarios and attacker capabilities as well as equipment location in the grid. The outcome of \u201chardware hacking\u201d is examined in both device and grid operation levels. Finally, we present hardware hardening techniques, aiming to make components attack-resistant and reduce their vulnerability surface.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s41635-018-0063-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1290439", 
            "issn": [
              "2509-3428", 
              "2509-3436"
            ], 
            "name": "Journal of Hardware and Systems Security", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "embedded system", 
          "microprocessor-based embedded systems", 
          "different access scenarios", 
          "smart grid devices", 
          "malicious purposes", 
          "attacker capabilities", 
          "hardware design", 
          "hardware hacking", 
          "grid devices", 
          "smart grid", 
          "communication technologies", 
          "grid equipment", 
          "access scenarios", 
          "hardware", 
          "operation level", 
          "equipment location", 
          "intelligence collection", 
          "vulnerability surface", 
          "devices", 
          "grid", 
          "intelligence", 
          "hacking", 
          "abstraction", 
          "system", 
          "scenarios", 
          "technology", 
          "capability", 
          "equipment", 
          "surface", 
          "collection", 
          "severe consequences", 
          "design", 
          "technique", 
          "compromise", 
          "location", 
          "paper", 
          "variety", 
          "components", 
          "purpose", 
          "interaction", 
          "levels", 
          "low levels", 
          "consequences", 
          "outcomes", 
          "unprotected hardware design", 
          "system operation compromise", 
          "operation compromise", 
          "grid operation levels", 
          "Hardware-Layer Intelligence Collection", 
          "Smart Grid Embedded Systems", 
          "Grid Embedded Systems"
        ], 
        "name": "Hardware-Layer Intelligence Collection for Smart Grid Embedded Systems", 
        "pagination": "132-146", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111153201"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41635-018-0063-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41635-018-0063-0", 
          "https://app.dimensions.ai/details/publication/pub.1111153201"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_794.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s41635-018-0063-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0063-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0063-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0063-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0063-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      22 PREDICATES      85 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41635-018-0063-0 schema:about anzsrc-for:08
    2 anzsrc-for:0803
    3 schema:author N19bc411591f248a9b29e95a4b275e879
    4 schema:citation sg:pub.10.1007/11894063_29
    5 sg:pub.10.1007/3-540-44499-8_24
    6 sg:pub.10.1007/3-540-48405-1_25
    7 sg:pub.10.1007/3-540-68697-5_9
    8 sg:pub.10.1007/978-1-4419-5906-5_229
    9 sg:pub.10.1007/978-1-4471-5210-1_5
    10 sg:pub.10.1007/978-3-540-87403-4_7
    11 sg:pub.10.1007/978-3-642-39498-0_12
    12 sg:pub.10.1007/bfb0028165
    13 schema:datePublished 2019-01-04
    14 schema:datePublishedReg 2019-01-04
    15 schema:description Smart grids include a variety of microprocessor-based embedded systems, interconnected with communication technologies. In this interaction, hardware is the lower level of abstraction. Insecure and unprotected hardware design of smart grid devices enable system operation compromise, eventually leading to undesirable and often severe consequences. In this paper, we discuss how the hardware of grid equipment can be used to collect intelligence utilized towards beneficial or malicious purposes. We consider different access scenarios and attacker capabilities as well as equipment location in the grid. The outcome of “hardware hacking” is examined in both device and grid operation levels. Finally, we present hardware hardening techniques, aiming to make components attack-resistant and reduce their vulnerability surface.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N10f2acf4be4e43919526a9f47ef82315
    20 Nf7d6e47bdf58479485d90328ab926000
    21 sg:journal.1290439
    22 schema:keywords Grid Embedded Systems
    23 Hardware-Layer Intelligence Collection
    24 Smart Grid Embedded Systems
    25 abstraction
    26 access scenarios
    27 attacker capabilities
    28 capability
    29 collection
    30 communication technologies
    31 components
    32 compromise
    33 consequences
    34 design
    35 devices
    36 different access scenarios
    37 embedded system
    38 equipment
    39 equipment location
    40 grid
    41 grid devices
    42 grid equipment
    43 grid operation levels
    44 hacking
    45 hardware
    46 hardware design
    47 hardware hacking
    48 intelligence
    49 intelligence collection
    50 interaction
    51 levels
    52 location
    53 low levels
    54 malicious purposes
    55 microprocessor-based embedded systems
    56 operation compromise
    57 operation level
    58 outcomes
    59 paper
    60 purpose
    61 scenarios
    62 severe consequences
    63 smart grid
    64 smart grid devices
    65 surface
    66 system
    67 system operation compromise
    68 technique
    69 technology
    70 unprotected hardware design
    71 variety
    72 vulnerability surface
    73 schema:name Hardware-Layer Intelligence Collection for Smart Grid Embedded Systems
    74 schema:pagination 132-146
    75 schema:productId N19d422105b194a739b5adba097240962
    76 N942f1cb06ace42cd9767249b4c2d11df
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111153201
    78 https://doi.org/10.1007/s41635-018-0063-0
    79 schema:sdDatePublished 2021-12-01T19:43
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N0423b7b7a4594bc8ab654db64fb29ce9
    82 schema:url https://doi.org/10.1007/s41635-018-0063-0
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N0423b7b7a4594bc8ab654db64fb29ce9 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N10f2acf4be4e43919526a9f47ef82315 schema:volumeNumber 3
    89 rdf:type schema:PublicationVolume
    90 N19bc411591f248a9b29e95a4b275e879 rdf:first sg:person.013072112173.85
    91 rdf:rest Nb65cfb5700904e62868f8e4923a03785
    92 N19d422105b194a739b5adba097240962 schema:name doi
    93 schema:value 10.1007/s41635-018-0063-0
    94 rdf:type schema:PropertyValue
    95 N942f1cb06ace42cd9767249b4c2d11df schema:name dimensions_id
    96 schema:value pub.1111153201
    97 rdf:type schema:PropertyValue
    98 Nb65cfb5700904e62868f8e4923a03785 rdf:first sg:person.014465053173.19
    99 rdf:rest rdf:nil
    100 Nf7d6e47bdf58479485d90328ab926000 schema:issueNumber 2
    101 rdf:type schema:PublicationIssue
    102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Information and Computing Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Computer Software
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1290439 schema:issn 2509-3428
    109 2509-3436
    110 schema:name Journal of Hardware and Systems Security
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.013072112173.85 schema:affiliation grid-institutes:grid.427253.5
    114 schema:familyName Konstantinou
    115 schema:givenName Charalambos
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013072112173.85
    117 rdf:type schema:Person
    118 sg:person.014465053173.19 schema:affiliation grid-institutes:grid.440573.1
    119 schema:familyName Maniatakos
    120 schema:givenName Michail
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465053173.19
    122 rdf:type schema:Person
    123 sg:pub.10.1007/11894063_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005869106
    124 https://doi.org/10.1007/11894063_29
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/3-540-44499-8_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045299661
    127 https://doi.org/10.1007/3-540-44499-8_24
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/3-540-48405-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005179729
    130 https://doi.org/10.1007/3-540-48405-1_25
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/3-540-68697-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047972271
    133 https://doi.org/10.1007/3-540-68697-5_9
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/978-1-4419-5906-5_229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019430115
    136 https://doi.org/10.1007/978-1-4419-5906-5_229
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-1-4471-5210-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029066497
    139 https://doi.org/10.1007/978-1-4471-5210-1_5
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-3-540-87403-4_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045982525
    142 https://doi.org/10.1007/978-3-540-87403-4_7
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-642-39498-0_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007448725
    145 https://doi.org/10.1007/978-3-642-39498-0_12
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bfb0028165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018518035
    148 https://doi.org/10.1007/bfb0028165
    149 rdf:type schema:CreativeWork
    150 grid-institutes:grid.427253.5 schema:alternateName FAMU-FSU College of Engineering, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA
    151 schema:name FAMU-FSU College of Engineering, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA
    152 rdf:type schema:Organization
    153 grid-institutes:grid.440573.1 schema:alternateName Center for Cyber Security, New York University Abu Dhabi, Abu Dhabi, UAE
    154 schema:name Center for Cyber Security, New York University Abu Dhabi, Abu Dhabi, UAE
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...