Variable-Length Bit Mapping and Error-Correcting Codes for Higher-Order Alphabet PUFs—Extended Version View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-11

AUTHORS

Vincent Immler, Matthias Hiller, Qinzhi Liu, Andreas Lenz, Antonia Wachter-Zeh

ABSTRACT

Device-specific physical characteristics provide the foundation for physical unclonable functions (PUFs), a hardware primitive for secure storage of cryptographic keys. Thus far, they have been implemented by either directly evaluating a binary output or by mapping symbols from a higher-order alphabet to a fixed-length bit sequence. However, when combined with equidistant quantization, this causes significant bias in the derived secret which is a security issue. To overcome this limitation, we propose a variable-length bit mapping that reflects the properties of a Gray code in a different metric, namely the Levenshtein metric instead of the classical Hamming metric. Subsequent error correction is therefore based on a custom insertion/deletion error-correcting code (ECC). This new approach effectively counteracts the bias in the derived key already at the input side of the ECC. We present the concept for our scheme and demonstrate its feasibility based on an empirical PUF distribution. As a result, we increase the effective output bit length of the secret by over 40% compared to state-of-the-art approaches. In addition to that, we investigate different segmentation approaches which is important due to the variable length of the considered values. Practical implementation results demonstrate that the proposed scheme requires only a fraction of the execution time compared to Bose-Chaudhuri-Hocquenghem (BCH) codes. This opens up a new direction of ECCs for PUFs that output responses with symbols of a higher-order alphabet. More... »

PAGES

78-93

References to SciGraph publications

  • 2008-01-01. Efficient Helper Data Key Extractor on FPGAs in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS – CHES 2008
  • 2017-07-29. Multiple-Valued Debiasing for Physically Unclonable Functions and Its Application to Fuzzy Extractors in CONSTRUCTIVE SIDE-CHANNEL ANALYSIS AND SECURE DESIGN
  • 2017-11-22. Variable-Length Bit Mapping and Error-Correcting Codes for Higher-Order Alphabet PUFs in SECURITY, PRIVACY, AND APPLIED CRYPTOGRAPHY ENGINEERING
  • 2018-08-15. The Past, Present, and Future of Physical Security Enclosures: From Battery-Backed Monitoring to PUF-Based Inherent Security and Beyond in JOURNAL OF HARDWARE AND SYSTEMS SECURITY
  • 2006. Read-Proof Hardware from Protective Coatings in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2006
  • 2013. Physically Unclonable Functions, Constructions, Properties and Applications in NONE
  • 2012-07-24. Decoding interleaved Reed–Solomon codes beyond their joint error-correcting capability in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2003-06-18. Decoding of Interleaved Reed Solomon Codes over Noisy Data in AUTOMATA, LANGUAGES AND PROGRAMMING
  • 2016-03-15. Secure key generation from biased PUFs: extended version in JOURNAL OF CRYPTOGRAPHIC ENGINEERING
  • 2004. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2004
  • 2007-01-01. FPGA Intrinsic PUFs and Their Use for IP Protection in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2007
  • 2016-08-04. Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS – CHES 2016
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41635-018-0056-z

    DOI

    http://dx.doi.org/10.1007/s41635-018-0056-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110536244


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute AISEC, Garching near Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.466709.a", 
              "name": [
                "Fraunhofer Institute AISEC, Garching near Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Immler", 
            "givenName": "Vincent", 
            "id": "sg:person.011670642147.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011670642147.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute AISEC, Garching near Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.466709.a", 
              "name": [
                "Fraunhofer Institute AISEC, Garching near Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hiller", 
            "givenName": "Matthias", 
            "id": "sg:person.011565060501.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011565060501.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University, Aachen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "RWTH Aachen University, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Qinzhi", 
            "id": "sg:person.010742172055.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010742172055.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Communications Engineering, Technical University of Munich (TUM), Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Institute for Communications Engineering, Technical University of Munich (TUM), Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lenz", 
            "givenName": "Andreas", 
            "id": "sg:person.013132513455.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013132513455.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Communications Engineering, Technical University of Munich (TUM), Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Institute for Communications Engineering, Technical University of Munich (TUM), Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wachter-Zeh", 
            "givenName": "Antonia", 
            "id": "sg:person.07625171255.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07625171255.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-41395-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006418303", 
              "https://doi.org/10.1007/978-3-642-41395-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-85053-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032518157", 
              "https://doi.org/10.1007/978-3-540-85053-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-71501-8_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092867559", 
              "https://doi.org/10.1007/978-3-319-71501-8_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-64647-3_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090979795", 
              "https://doi.org/10.1007/978-3-319-64647-3_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41635-018-0045-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106172849", 
              "https://doi.org/10.1007/s41635-018-0045-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45061-0_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051555335", 
              "https://doi.org/10.1007/3-540-45061-0_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24676-3_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040263189", 
              "https://doi.org/10.1007/978-3-540-24676-3_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-012-9728-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043566907", 
              "https://doi.org/10.1007/s10623-012-9728-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11894063_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005869106", 
              "https://doi.org/10.1007/11894063_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13389-016-0125-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009255279", 
              "https://doi.org/10.1007/s13389-016-0125-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74735-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053541019", 
              "https://doi.org/10.1007/978-3-540-74735-2_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-53140-2_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042734578", 
              "https://doi.org/10.1007/978-3-662-53140-2_20"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12-11", 
        "datePublishedReg": "2018-12-11", 
        "description": "Device-specific physical characteristics provide the foundation for physical unclonable functions (PUFs), a hardware primitive for secure storage of cryptographic keys. Thus far, they have been implemented by either directly evaluating a binary output or by mapping symbols from a higher-order alphabet to a fixed-length bit sequence. However, when combined with equidistant quantization, this causes significant bias in the derived secret which is a security issue. To overcome this limitation, we propose a variable-length bit mapping that reflects the properties of a Gray code in a different metric, namely the Levenshtein metric instead of the classical Hamming metric. Subsequent error correction is therefore based on a custom insertion/deletion error-correcting code (ECC). This new approach effectively counteracts the bias in the derived key already at the input side of the ECC. We present the concept for our scheme and demonstrate its feasibility based on an empirical PUF distribution. As a result, we increase the effective output bit length of the secret by over 40% compared to state-of-the-art approaches. In addition to that, we investigate different segmentation approaches which is important due to the variable length of the considered values. Practical implementation results demonstrate that the proposed scheme requires only a fraction of the execution time compared to Bose-Chaudhuri-Hocquenghem (BCH) codes. This opens up a new direction of ECCs for PUFs that output responses with symbols of a higher-order alphabet.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s41635-018-0056-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1290439", 
            "issn": [
              "2509-3428", 
              "2509-3436"
            ], 
            "name": "Journal of Hardware and Systems Security", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "error-correcting codes", 
          "Physical Unclonable Functions", 
          "high-order alphabets", 
          "Error-Correcting Codes", 
          "different segmentation approaches", 
          "practical implementation results", 
          "bit mapping", 
          "subsequent error correction", 
          "Bose-Chaudhuri", 
          "cryptographic keys", 
          "hardware primitives", 
          "secure storage", 
          "security issues", 
          "execution time", 
          "art approaches", 
          "segmentation approach", 
          "implementation results", 
          "Unclonable Functions", 
          "error correction", 
          "Hocquenghem (BCH) codes", 
          "different metrics", 
          "bit length", 
          "Gray code", 
          "mapping symbols", 
          "bit sequence", 
          "Hamming metric", 
          "binary output", 
          "code", 
          "metrics", 
          "Levenshtein metric", 
          "new approach", 
          "scheme", 
          "secrets", 
          "primitives", 
          "key", 
          "alphabet", 
          "variable length", 
          "symbols", 
          "mapping", 
          "quantization", 
          "output response", 
          "new directions", 
          "version", 
          "issues", 
          "concept", 
          "feasibility", 
          "storage", 
          "output", 
          "input side", 
          "foundation", 
          "limitations", 
          "results", 
          "time", 
          "sequence", 
          "physical characteristics", 
          "direction", 
          "state", 
          "correction", 
          "characteristics", 
          "function", 
          "addition", 
          "side", 
          "significant bias", 
          "distribution", 
          "values", 
          "length", 
          "bias", 
          "properties", 
          "response", 
          "fraction", 
          "approach", 
          "Device-specific physical characteristics", 
          "fixed-length bit sequence", 
          "equidistant quantization", 
          "variable-length bit mapping", 
          "classical Hamming metric", 
          "custom insertion/deletion error-correcting code", 
          "insertion/deletion error-correcting code", 
          "deletion error-correcting code", 
          "empirical PUF distribution", 
          "PUF distribution", 
          "effective output bit length", 
          "output bit length", 
          "Length Bit Mapping", 
          "Higher-Order Alphabet PUFs\u2014Extended Version", 
          "Alphabet PUFs\u2014Extended Version", 
          "PUFs\u2014Extended Version"
        ], 
        "name": "Variable-Length Bit Mapping and Error-Correcting Codes for Higher-Order Alphabet PUFs\u2014Extended Version", 
        "pagination": "78-93", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110536244"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41635-018-0056-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41635-018-0056-z", 
          "https://app.dimensions.ai/details/publication/pub.1110536244"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_779.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s41635-018-0056-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0056-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0056-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0056-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0056-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    227 TRIPLES      22 PREDICATES      124 URIs      104 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41635-018-0056-z schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author N963c814eab1f425ab7f0357c23af70f9
    4 schema:citation sg:pub.10.1007/11894063_29
    5 sg:pub.10.1007/3-540-45061-0_9
    6 sg:pub.10.1007/978-3-319-64647-3_15
    7 sg:pub.10.1007/978-3-319-71501-8_11
    8 sg:pub.10.1007/978-3-540-24676-3_31
    9 sg:pub.10.1007/978-3-540-74735-2_5
    10 sg:pub.10.1007/978-3-540-85053-3_12
    11 sg:pub.10.1007/978-3-642-41395-7
    12 sg:pub.10.1007/978-3-662-53140-2_20
    13 sg:pub.10.1007/s10623-012-9728-9
    14 sg:pub.10.1007/s13389-016-0125-6
    15 sg:pub.10.1007/s41635-018-0045-2
    16 schema:datePublished 2018-12-11
    17 schema:datePublishedReg 2018-12-11
    18 schema:description Device-specific physical characteristics provide the foundation for physical unclonable functions (PUFs), a hardware primitive for secure storage of cryptographic keys. Thus far, they have been implemented by either directly evaluating a binary output or by mapping symbols from a higher-order alphabet to a fixed-length bit sequence. However, when combined with equidistant quantization, this causes significant bias in the derived secret which is a security issue. To overcome this limitation, we propose a variable-length bit mapping that reflects the properties of a Gray code in a different metric, namely the Levenshtein metric instead of the classical Hamming metric. Subsequent error correction is therefore based on a custom insertion/deletion error-correcting code (ECC). This new approach effectively counteracts the bias in the derived key already at the input side of the ECC. We present the concept for our scheme and demonstrate its feasibility based on an empirical PUF distribution. As a result, we increase the effective output bit length of the secret by over 40% compared to state-of-the-art approaches. In addition to that, we investigate different segmentation approaches which is important due to the variable length of the considered values. Practical implementation results demonstrate that the proposed scheme requires only a fraction of the execution time compared to Bose-Chaudhuri-Hocquenghem (BCH) codes. This opens up a new direction of ECCs for PUFs that output responses with symbols of a higher-order alphabet.
    19 schema:genre article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N3d96ebb420634d3bbc884e4f6ae0a73f
    23 N82f64b827cd44ef5b12bf6e31d84e7a7
    24 sg:journal.1290439
    25 schema:keywords Alphabet PUFs—Extended Version
    26 Bose-Chaudhuri
    27 Device-specific physical characteristics
    28 Error-Correcting Codes
    29 Gray code
    30 Hamming metric
    31 Higher-Order Alphabet PUFs—Extended Version
    32 Hocquenghem (BCH) codes
    33 Length Bit Mapping
    34 Levenshtein metric
    35 PUF distribution
    36 PUFs—Extended Version
    37 Physical Unclonable Functions
    38 Unclonable Functions
    39 addition
    40 alphabet
    41 approach
    42 art approaches
    43 bias
    44 binary output
    45 bit length
    46 bit mapping
    47 bit sequence
    48 characteristics
    49 classical Hamming metric
    50 code
    51 concept
    52 correction
    53 cryptographic keys
    54 custom insertion/deletion error-correcting code
    55 deletion error-correcting code
    56 different metrics
    57 different segmentation approaches
    58 direction
    59 distribution
    60 effective output bit length
    61 empirical PUF distribution
    62 equidistant quantization
    63 error correction
    64 error-correcting codes
    65 execution time
    66 feasibility
    67 fixed-length bit sequence
    68 foundation
    69 fraction
    70 function
    71 hardware primitives
    72 high-order alphabets
    73 implementation results
    74 input side
    75 insertion/deletion error-correcting code
    76 issues
    77 key
    78 length
    79 limitations
    80 mapping
    81 mapping symbols
    82 metrics
    83 new approach
    84 new directions
    85 output
    86 output bit length
    87 output response
    88 physical characteristics
    89 practical implementation results
    90 primitives
    91 properties
    92 quantization
    93 response
    94 results
    95 scheme
    96 secrets
    97 secure storage
    98 security issues
    99 segmentation approach
    100 sequence
    101 side
    102 significant bias
    103 state
    104 storage
    105 subsequent error correction
    106 symbols
    107 time
    108 values
    109 variable length
    110 variable-length bit mapping
    111 version
    112 schema:name Variable-Length Bit Mapping and Error-Correcting Codes for Higher-Order Alphabet PUFs—Extended Version
    113 schema:pagination 78-93
    114 schema:productId Nc1bd1dc2f4424e7085921519547bf9aa
    115 Nfbc7646107054d5c9d1478d416ef1448
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110536244
    117 https://doi.org/10.1007/s41635-018-0056-z
    118 schema:sdDatePublished 2021-12-01T19:40
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N51233954a79046a1bb193240d17402f4
    121 schema:url https://doi.org/10.1007/s41635-018-0056-z
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N3d96ebb420634d3bbc884e4f6ae0a73f schema:issueNumber 1
    126 rdf:type schema:PublicationIssue
    127 N3f10c5b1b28b4b66b322157b368abd33 rdf:first sg:person.010742172055.20
    128 rdf:rest Nb012efb687314fa3b76e5e68ad1e122b
    129 N51233954a79046a1bb193240d17402f4 schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 N82f64b827cd44ef5b12bf6e31d84e7a7 schema:volumeNumber 3
    132 rdf:type schema:PublicationVolume
    133 N963c814eab1f425ab7f0357c23af70f9 rdf:first sg:person.011670642147.41
    134 rdf:rest Nc0f4338cc5e24ccda4e5c61c4995a286
    135 Na5297fdc0d7042f5aa15b3136b0a0114 rdf:first sg:person.07625171255.99
    136 rdf:rest rdf:nil
    137 Nb012efb687314fa3b76e5e68ad1e122b rdf:first sg:person.013132513455.31
    138 rdf:rest Na5297fdc0d7042f5aa15b3136b0a0114
    139 Nc0f4338cc5e24ccda4e5c61c4995a286 rdf:first sg:person.011565060501.93
    140 rdf:rest N3f10c5b1b28b4b66b322157b368abd33
    141 Nc1bd1dc2f4424e7085921519547bf9aa schema:name doi
    142 schema:value 10.1007/s41635-018-0056-z
    143 rdf:type schema:PropertyValue
    144 Nfbc7646107054d5c9d1478d416ef1448 schema:name dimensions_id
    145 schema:value pub.1110536244
    146 rdf:type schema:PropertyValue
    147 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Information and Computing Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Data Format
    152 rdf:type schema:DefinedTerm
    153 sg:journal.1290439 schema:issn 2509-3428
    154 2509-3436
    155 schema:name Journal of Hardware and Systems Security
    156 schema:publisher Springer Nature
    157 rdf:type schema:Periodical
    158 sg:person.010742172055.20 schema:affiliation grid-institutes:grid.1957.a
    159 schema:familyName Liu
    160 schema:givenName Qinzhi
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010742172055.20
    162 rdf:type schema:Person
    163 sg:person.011565060501.93 schema:affiliation grid-institutes:grid.466709.a
    164 schema:familyName Hiller
    165 schema:givenName Matthias
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011565060501.93
    167 rdf:type schema:Person
    168 sg:person.011670642147.41 schema:affiliation grid-institutes:grid.466709.a
    169 schema:familyName Immler
    170 schema:givenName Vincent
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011670642147.41
    172 rdf:type schema:Person
    173 sg:person.013132513455.31 schema:affiliation grid-institutes:grid.6936.a
    174 schema:familyName Lenz
    175 schema:givenName Andreas
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013132513455.31
    177 rdf:type schema:Person
    178 sg:person.07625171255.99 schema:affiliation grid-institutes:grid.6936.a
    179 schema:familyName Wachter-Zeh
    180 schema:givenName Antonia
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07625171255.99
    182 rdf:type schema:Person
    183 sg:pub.10.1007/11894063_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005869106
    184 https://doi.org/10.1007/11894063_29
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/3-540-45061-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051555335
    187 https://doi.org/10.1007/3-540-45061-0_9
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/978-3-319-64647-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090979795
    190 https://doi.org/10.1007/978-3-319-64647-3_15
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/978-3-319-71501-8_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092867559
    193 https://doi.org/10.1007/978-3-319-71501-8_11
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/978-3-540-24676-3_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040263189
    196 https://doi.org/10.1007/978-3-540-24676-3_31
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/978-3-540-74735-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053541019
    199 https://doi.org/10.1007/978-3-540-74735-2_5
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/978-3-540-85053-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032518157
    202 https://doi.org/10.1007/978-3-540-85053-3_12
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/978-3-642-41395-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006418303
    205 https://doi.org/10.1007/978-3-642-41395-7
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/978-3-662-53140-2_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042734578
    208 https://doi.org/10.1007/978-3-662-53140-2_20
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s10623-012-9728-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043566907
    211 https://doi.org/10.1007/s10623-012-9728-9
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s13389-016-0125-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009255279
    214 https://doi.org/10.1007/s13389-016-0125-6
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s41635-018-0045-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106172849
    217 https://doi.org/10.1007/s41635-018-0045-2
    218 rdf:type schema:CreativeWork
    219 grid-institutes:grid.1957.a schema:alternateName RWTH Aachen University, Aachen, Germany
    220 schema:name RWTH Aachen University, Aachen, Germany
    221 rdf:type schema:Organization
    222 grid-institutes:grid.466709.a schema:alternateName Fraunhofer Institute AISEC, Garching near Munich, Germany
    223 schema:name Fraunhofer Institute AISEC, Garching near Munich, Germany
    224 rdf:type schema:Organization
    225 grid-institutes:grid.6936.a schema:alternateName Institute for Communications Engineering, Technical University of Munich (TUM), Munich, Germany
    226 schema:name Institute for Communications Engineering, Technical University of Munich (TUM), Munich, Germany
    227 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...