Hardware Security Implications of Reliability, Remanence, and Recovery in Embedded Memory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-11

AUTHORS

Sergei Skorobogatov

ABSTRACT

Secure semiconductor devices usually destroy key material on tamper detection. However, data remanence effect in SRAM and Flash/EEPROM makes secure erasure process more challenging. On the other hand, data integrity of the embedded memory is essential to mitigate fault attacks and Trojan malware. Data retention issues could influence the reliability of embedded systems. Some examples of such issues in industrial and automotive applications are presented. When it comes to the security of semiconductor devices, both data remanence and data retention issues could lead to possible data recovery by an attacker. This paper introduces a new power glitching technique that reduces the data remanence time in embedded SRAM from seconds to microseconds at almost no cost. This would definitely help in designing systems with better secret key guarding. Data remanence in non-volatile memory could be influenced in the same way. The effect of data remanence and data retention on hardware security is discussed and possible countermeasures are suggested. This should raise awareness among the designers of secure embedded systems. More... »

PAGES

314-321

References to SciGraph publications

  • 2012. Breakthrough Silicon Scanning Discovers Backdoor in Military Chip in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS – CHES 2012
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41635-018-0050-5

    DOI

    http://dx.doi.org/10.1007/s41635-018-0050-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107554003


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computer Software", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Technology, University of Cambridge, Cambridge, UK", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Computer Science and Technology, University of Cambridge, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Skorobogatov", 
            "givenName": "Sergei", 
            "id": "sg:person.07765474454.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07765474454.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-33027-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017602600", 
              "https://doi.org/10.1007/978-3-642-33027-8_2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-11", 
        "datePublishedReg": "2018-10-11", 
        "description": "Secure semiconductor devices usually destroy key material on tamper detection. However, data remanence effect in SRAM and Flash/EEPROM makes secure erasure process more challenging. On the other hand, data integrity of the embedded memory is essential to mitigate fault attacks and Trojan malware. Data retention issues could influence the reliability of embedded systems. Some examples of such issues in industrial and automotive applications are presented. When it comes to the security of semiconductor devices, both data remanence and data retention issues could lead to possible data recovery by an attacker. This paper introduces a new power glitching technique that reduces the data remanence time in embedded SRAM from seconds to microseconds at almost no cost. This would definitely help in designing systems with better secret key guarding. Data remanence in non-volatile memory could be influenced in the same way. The effect of data remanence and data retention on hardware security is discussed and possible countermeasures are suggested. This should raise awareness among the designers of secure embedded systems.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s41635-018-0050-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1290439", 
            "issn": [
              "2509-3428", 
              "2509-3436"
            ], 
            "name": "Journal of Hardware and Systems Security", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "data remanence", 
          "data retention issues", 
          "data remanence effects", 
          "tamper detection", 
          "data integrity", 
          "hardware security", 
          "fault attacks", 
          "security implications", 
          "data recovery", 
          "remanence time", 
          "possible countermeasures", 
          "non-volatile memory", 
          "Embedded Memories", 
          "security", 
          "remanence effects", 
          "Embedded SRAM", 
          "such issues", 
          "malware", 
          "attacker", 
          "SRAM", 
          "memory", 
          "system", 
          "automotive applications", 
          "issues", 
          "key material", 
          "designers", 
          "reliability", 
          "devices", 
          "attacks", 
          "data retention", 
          "countermeasures", 
          "erasure process", 
          "applications", 
          "cost", 
          "detection", 
          "EEPROM", 
          "technique", 
          "same way", 
          "example", 
          "way", 
          "seconds", 
          "process", 
          "hand", 
          "time", 
          "integrity", 
          "microseconds", 
          "awareness", 
          "semiconductor devices", 
          "retention issues", 
          "recovery", 
          "remanence", 
          "materials", 
          "implications", 
          "effect", 
          "guarding", 
          "retention", 
          "paper", 
          "Secure semiconductor devices", 
          "Flash/EEPROM", 
          "secure erasure process", 
          "Trojan malware", 
          "possible data recovery", 
          "new power glitching technique", 
          "power glitching technique", 
          "glitching technique", 
          "data remanence time", 
          "better secret key guarding", 
          "secret key guarding", 
          "key guarding", 
          "Hardware Security Implications"
        ], 
        "name": "Hardware Security Implications of Reliability, Remanence, and Recovery in Embedded Memory", 
        "pagination": "314-321", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107554003"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41635-018-0050-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41635-018-0050-5", 
          "https://app.dimensions.ai/details/publication/pub.1107554003"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_779.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s41635-018-0050-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0050-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0050-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0050-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41635-018-0050-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      22 PREDICATES      97 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41635-018-0050-5 schema:about anzsrc-for:08
    2 anzsrc-for:0803
    3 anzsrc-for:0804
    4 schema:author N426d0654b6484a1e8243bc8a9a9ffd8a
    5 schema:citation sg:pub.10.1007/978-3-642-33027-8_2
    6 schema:datePublished 2018-10-11
    7 schema:datePublishedReg 2018-10-11
    8 schema:description Secure semiconductor devices usually destroy key material on tamper detection. However, data remanence effect in SRAM and Flash/EEPROM makes secure erasure process more challenging. On the other hand, data integrity of the embedded memory is essential to mitigate fault attacks and Trojan malware. Data retention issues could influence the reliability of embedded systems. Some examples of such issues in industrial and automotive applications are presented. When it comes to the security of semiconductor devices, both data remanence and data retention issues could lead to possible data recovery by an attacker. This paper introduces a new power glitching technique that reduces the data remanence time in embedded SRAM from seconds to microseconds at almost no cost. This would definitely help in designing systems with better secret key guarding. Data remanence in non-volatile memory could be influenced in the same way. The effect of data remanence and data retention on hardware security is discussed and possible countermeasures are suggested. This should raise awareness among the designers of secure embedded systems.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N78d1e80c25294d50889152ef22039dc7
    13 N8a2cd522a9b649b68df7b58980d866dc
    14 sg:journal.1290439
    15 schema:keywords EEPROM
    16 Embedded Memories
    17 Embedded SRAM
    18 Flash/EEPROM
    19 Hardware Security Implications
    20 SRAM
    21 Secure semiconductor devices
    22 Trojan malware
    23 applications
    24 attacker
    25 attacks
    26 automotive applications
    27 awareness
    28 better secret key guarding
    29 cost
    30 countermeasures
    31 data integrity
    32 data recovery
    33 data remanence
    34 data remanence effects
    35 data remanence time
    36 data retention
    37 data retention issues
    38 designers
    39 detection
    40 devices
    41 effect
    42 erasure process
    43 example
    44 fault attacks
    45 glitching technique
    46 guarding
    47 hand
    48 hardware security
    49 implications
    50 integrity
    51 issues
    52 key guarding
    53 key material
    54 malware
    55 materials
    56 memory
    57 microseconds
    58 new power glitching technique
    59 non-volatile memory
    60 paper
    61 possible countermeasures
    62 possible data recovery
    63 power glitching technique
    64 process
    65 recovery
    66 reliability
    67 remanence
    68 remanence effects
    69 remanence time
    70 retention
    71 retention issues
    72 same way
    73 seconds
    74 secret key guarding
    75 secure erasure process
    76 security
    77 security implications
    78 semiconductor devices
    79 such issues
    80 system
    81 tamper detection
    82 technique
    83 time
    84 way
    85 schema:name Hardware Security Implications of Reliability, Remanence, and Recovery in Embedded Memory
    86 schema:pagination 314-321
    87 schema:productId N1e92f22d5d324bf7a7d9f657820501a0
    88 N59a82efb61e6412fbc9384aa88302df2
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107554003
    90 https://doi.org/10.1007/s41635-018-0050-5
    91 schema:sdDatePublished 2021-11-01T18:31
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher Na83cfccff535490fbddfe25c7ad3d3e4
    94 schema:url https://doi.org/10.1007/s41635-018-0050-5
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N1e92f22d5d324bf7a7d9f657820501a0 schema:name dimensions_id
    99 schema:value pub.1107554003
    100 rdf:type schema:PropertyValue
    101 N426d0654b6484a1e8243bc8a9a9ffd8a rdf:first sg:person.07765474454.18
    102 rdf:rest rdf:nil
    103 N59a82efb61e6412fbc9384aa88302df2 schema:name doi
    104 schema:value 10.1007/s41635-018-0050-5
    105 rdf:type schema:PropertyValue
    106 N78d1e80c25294d50889152ef22039dc7 schema:volumeNumber 2
    107 rdf:type schema:PublicationVolume
    108 N8a2cd522a9b649b68df7b58980d866dc schema:issueNumber 4
    109 rdf:type schema:PublicationIssue
    110 Na83cfccff535490fbddfe25c7ad3d3e4 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Information and Computing Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Computer Software
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Data Format
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1290439 schema:issn 2509-3428
    122 2509-3436
    123 schema:name Journal of Hardware and Systems Security
    124 schema:publisher Springer Nature
    125 rdf:type schema:Periodical
    126 sg:person.07765474454.18 schema:affiliation grid-institutes:grid.5335.0
    127 schema:familyName Skorobogatov
    128 schema:givenName Sergei
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07765474454.18
    130 rdf:type schema:Person
    131 sg:pub.10.1007/978-3-642-33027-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017602600
    132 https://doi.org/10.1007/978-3-642-33027-8_2
    133 rdf:type schema:CreativeWork
    134 grid-institutes:grid.5335.0 schema:alternateName Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
    135 schema:name Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...