Coherent emission mechanisms in astrophysical plasmas View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-25

AUTHORS

D. B. Melrose

ABSTRACT

Three known examples of coherent emission in radio astronomical sources are reviewed: plasma emission, electron cyclotron maser emission (ECME) and pulsar radio emission. Plasma emission is a multi-stage mechanism with the first stage being generation of Langmuir waves through a streaming instability, and subsequent stages involving partial conversion of the Langmuir turbulence into escaping radiation at the fundamental (F) and second harmonic (H) of the plasma frequency. The early development and subsequent refinements of the theory, motivated by application to solar radio bursts, are reviewed. The driver of the instability is faster electrons outpacing slower electrons, resulting in a positive gradient (df(v‖)/dv‖>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{d}}f(v_\parallel )/\mathrm{{d}}v_\parallel >0$$\end{document}) at the front of the beam. Despite many successes of the theory, there is no widely accepted explanation for type I bursts and various radio continua. The earliest models for ECME were purely theoretical, and the theory was later adapted and applied to Jupiter (DAM), the Earth (AKR), solar spike bursts and flare stars. ECME strongly favors the x mode, whereas plasma emission favors the o mode. Two drivers for ECME are a ring feature (implying df(v)/dv>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{d}}f(v)/\mathrm{{d}}v>0$$\end{document}) and a loss-cone feature. Loss-cone-driven ECME was initially favored for all applications. The now favored driver for AKR is the ring-feature in a horseshoe distribution, which results from acceleration by a parallel electric on converging magnetic field lines. The driver in DAM and solar and stellar applications is uncertain. The pulsar radio emission mechanism remains an enigma. Ingredients needed in discussing possible mechanisms are reviewed: general properties of pulsars, pulsar electrodynamics, the properties of pulsar plasma and wave dispersion in such plasma. Four specific emission mechanisms (curvature emission, linear acceleration emission, relativistic plasma emission and anomalous Doppler emission) are discussed and it is argued that all encounter difficulties. Coherent radio emission from extensive air showers in the Earth’s atmosphere is reviewed briefly. The difference in theoretical approach from astrophysical theories is pointed out and discussed. Fine structures in DAM and in pulsar radio emission are discussed, and it is suggested that trapping in a large-amplitude wave, as in a model for discrete VLF emission, provides a plausible explanation. A possible direct measure of coherence is pointed out. More... »

PAGES

5

References to SciGraph publications

  • 1968-03. Electrodynamic Effects of Jupiter's Satellite Io in NATURE
  • 1972-06. A dynamic theory of type III solar radio bursts in SOLAR PHYSICS
  • 2012-05-11. Frequency Fine Structures of Type III Bursts Due to Localized Medium-Scale Density Structures Along Paths of Type III Beams in SOLAR PHYSICS
  • 2006-12. Solar Radio Bursts with Drifting Stripes in Emission and Absorption in SPACE SCIENCE REVIEWS
  • 1973-03. The prevalence of second harmonic radiation in type III bursts observed at kilometric wavelengths in SOLAR PHYSICS
  • 1953-09. Evidence of Harmonics in the Spectrum of a Solar Radio Outburst in NATURE
  • 1968-07. Rotating Neutron Stars, Pulsars and Supernova Remnants in NATURE
  • 2006-07-05. The electron–cyclotron maser for astrophysical application in THE ASTRONOMY AND ASTROPHYSICS REVIEW
  • 1970-02. Possible Mechanism for the Pulsar Radio Emission in NATURE
  • 1984-07. Propagation of γ-radiation in strong magnetic fields of pulsars in ASTROPHYSICS AND SPACE SCIENCE
  • 1988-01. Plasma flow nonstationarity in pulsar magnetospheres and two-stream instability in ASTROPHYSICS AND SPACE SCIENCE
  • 1979-09. Wave ducting of solar metre-wave radio emission as an explanation of fundamental/harmonic source coincidence and other anomalies in SOLAR PHYSICS
  • 2011. Fine Structure of Solar Radio Bursts in NONE
  • 1966-09. Frequency Splitting of Solar Radio Bursts in NATURE
  • 1995-06. The models for radio emission from pulsars–The outstanding issues in JOURNAL OF ASTROPHYSICS AND ASTRONOMY
  • 1983-01. Propagation of oblique waves in a relativistic electron-positron plasma in ASTROPHYSICS
  • 1963-04. Decameter Radiation from Jupiter in NATURE
  • 1964-09. Influence of the Satellite Io on Jupiter's Decametric Emission in NATURE
  • 1988-01. Curvature radiation radio maser in a pulsar magnetosphere in ASTROPHYSICS
  • 1985-03. The loss-cone driven instability for Langmuir waves in an unmagnetized plasma in SOLAR PHYSICS
  • 2012-09-16. On the analogy between the zebra patterns in radio emission from the sun and the crab pulsar in ASTRONOMY LETTERS
  • 1983-10. The plasma radiation of flare kernels in SOLAR PHYSICS
  • 1975-10. Cyclotron wave instability in the corona and origin of solar radio emission with fine structure in SOLAR PHYSICS
  • 1975-08. Cyclotron wave instability in the corona and origin of solar radio emission with fine structure in SOLAR PHYSICS
  • 2010. Under the Radar, The First Woman in Radio Astronomy: Ruby Payne-Scott in NONE
  • 2015. Triggered VLF Emissions-an On-Going Nonlinear Puzzle in MAGNETOSPHERIC PLASMA PHYSICS: THE IMPACT OF JIM DUNGEY’S RESEARCH
  • 2016-11-02. Is Cyclotron Maser Emission in Solar Flares Driven by a Horseshoe Distribution? in SOLAR PHYSICS
  • 1972-07. Relativistic turbulent plasma in pulsars in ASTROPHYSICS
  • 2013-03-08. Laboratory astrophysics: Investigation of planetary and astrophysical maser emission in SPACE SCIENCE REVIEWS
  • 1997-08. Reabsorption of resonant transition radiation in RADIOPHYSICS AND QUANTUM ELECTRONICS
  • 1975-01. The motion of charged particles in a strong electromagnetic field and curvature radiation in ASTROPHYSICS AND SPACE SCIENCE
  • 1975-09. Generation of intermediate drift bursts in solar type IV radio continua through coupling of whistlers and Langmuir waves in SOLAR PHYSICS
  • 1975-08. Intermediate polarization of type I bursts in SOLAR PHYSICS
  • 1980-08. A plasma-emission mechanism for type I solar radio emission in SOLAR PHYSICS
  • 1975-10. Cyclotron wave instability in the corona and origin of solar radio emission with fine structure in SOLAR PHYSICS
  • 1988-07. Theory of the radio emission of pulsars in ASTROPHYSICS AND SPACE SCIENCE
  • 1983-09. Frequency splitting in stria bursts: Possible roles of low-frequency waves in SOLAR PHYSICS
  • 2011-06-24. Who Needs Turbulence? in SPACE SCIENCE REVIEWS
  • 1981. Maser Pulse Emission Mechanisms in PULSARS
  • 1975-02. Type IIIb radio bursts: 80 MHz source position and theoretical model in SOLAR PHYSICS
  • 1972-07. A possibly direct measurement of coronal magnetic field strengths in SOLAR PHYSICS
  • 2013. Quantum Plasmadynamics, Magnetized Plasmas in NONE
  • 2013-05. Excitation of electron Langmuir frequency harmonics in the solar atmosphere in PLASMA PHYSICS REPORTS
  • 2001-06. Ion-Sound Model of Microwave Spikes with Fast Shocks in the Reconnection Region in SOLAR PHYSICS
  • 1974-06. The third harmonic of type III solar radio bursts in SOLAR PHYSICS
  • 1984-08. Partial reconstruction of the initial conditions for streams of energetic electrons associated with a solar type III burst in SOLAR PHYSICS
  • 2005-05. Detection and imaging of atmospheric radio flashes from cosmic ray air showers in NATURE
  • 1980-10. Satellite measurements and theories of low altitude auroral particle acceleration in SPACE SCIENCE REVIEWS
  • 1983-10. Beam instability of the plasma in pulsar magnetospheres in ASTROPHYSICS
  • 1989-09. Quasi-linear relaxation of electrons interacting with an inhomogeneous distribution of Langmuir waves in SOLAR PHYSICS
  • 1972-07. Peculiar absorption and emission microstructures in the type IV solar radio outburst of March 2, 1970 in SOLAR PHYSICS
  • 1973-11. Nonlinear wave coupling in type IV solar radio bursts in SOLAR PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41614-017-0007-0

    DOI

    http://dx.doi.org/10.1007/s41614-017-0007-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090893220


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "SIfA, School of Physics, The University of Sydney, 2006, Sydney, NSW, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1013.3", 
              "name": [
                "SIfA, School of Physics, The University of Sydney, 2006, Sydney, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Melrose", 
            "givenName": "D. B.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/225612a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016596218", 
              "https://doi.org/10.1038/225612a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00239799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000903231", 
              "https://doi.org/10.1007/bf00239799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00196194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019479270", 
              "https://doi.org/10.1007/bf00196194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/219145a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012856478", 
              "https://doi.org/10.1038/219145a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00152367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022979877", 
              "https://doi.org/10.1007/bf00152367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11214-013-9963-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039800393", 
              "https://doi.org/10.1007/s11214-013-9963-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00149110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003089073", 
              "https://doi.org/10.1007/bf00149110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02676485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046219533", 
              "https://doi.org/10.1007/bf02676485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00224846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020459797", 
              "https://doi.org/10.1007/bf00224846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s106377371209006x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009699110", 
              "https://doi.org/10.1134/s106377371209006x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2031008a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025337700", 
              "https://doi.org/10.1038/2031008a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00174543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012191333", 
              "https://doi.org/10.1007/bf00174543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01005818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049348955", 
              "https://doi.org/10.1007/bf01005818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/217935a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008268671", 
              "https://doi.org/10.1038/217935a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00153225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034387801", 
              "https://doi.org/10.1007/bf00153225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00153448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043672764", 
              "https://doi.org/10.1007/bf00153448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11214-006-9141-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025387136", 
              "https://doi.org/10.1007/s11214-006-9141-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00153387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143685", 
              "https://doi.org/10.1007/bf00153387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-4045-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014559922", 
              "https://doi.org/10.1007/978-1-4614-4045-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00155758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024817020", 
              "https://doi.org/10.1007/bf00155758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00162389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012291937", 
              "https://doi.org/10.1007/bf00162389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00152366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005055832", 
              "https://doi.org/10.1007/bf00152366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/198020a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053483025", 
              "https://doi.org/10.1038/198020a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00156854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025270672", 
              "https://doi.org/10.1007/bf00156854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02714830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013199932", 
              "https://doi.org/10.1007/bf02714830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11207-012-0001-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000623005", 
              "https://doi.org/10.1007/s11207-012-0001-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010310210707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043392687", 
              "https://doi.org/10.1023/a:1010310210707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00155756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012874038", 
              "https://doi.org/10.1007/bf00155756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00151214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024183222", 
              "https://doi.org/10.1007/bf00151214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00638987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046647128", 
              "https://doi.org/10.1007/bf00638987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00650180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021545344", 
              "https://doi.org/10.1007/bf00650180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063780x13050036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038510518", 
              "https://doi.org/10.1134/s1063780x13050036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00637577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006178767", 
              "https://doi.org/10.1007/bf00637577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01005694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019948098", 
              "https://doi.org/10.1007/bf01005694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01014857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009506234", 
              "https://doi.org/10.1007/bf01014857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00153224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000659434", 
              "https://doi.org/10.1007/bf00153224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00154818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051989827", 
              "https://doi.org/10.1007/bf00154818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00152393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000365645", 
              "https://doi.org/10.1007/bf00152393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-7912-6_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089760806", 
              "https://doi.org/10.1007/978-94-011-7912-6_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/172533a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047777677", 
              "https://doi.org/10.1038/172533a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-20015-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001340025", 
              "https://doi.org/10.1007/978-3-642-20015-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00212238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004562942", 
              "https://doi.org/10.1007/bf00212238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00159-006-0001-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023849697", 
              "https://doi.org/10.1007/s00159-006-0001-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11214-011-9793-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016877026", 
              "https://doi.org/10.1007/s11214-011-9793-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00149813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049893792", 
              "https://doi.org/10.1007/bf00149813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00646233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052505290", 
              "https://doi.org/10.1007/bf00646233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043952395", 
              "https://doi.org/10.1038/nature03614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-18359-6_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052090371", 
              "https://doi.org/10.1007/978-3-319-18359-6_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2111070a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046903083", 
              "https://doi.org/10.1038/2111070a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11207-016-1006-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049913287", 
              "https://doi.org/10.1007/s11207-016-1006-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03141-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003834409", 
              "https://doi.org/10.1007/978-3-642-03141-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01011364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006387170", 
              "https://doi.org/10.1007/bf01011364"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07-25", 
        "datePublishedReg": "2017-07-25", 
        "description": "Three known examples of coherent emission in radio astronomical sources are reviewed: plasma emission, electron cyclotron maser emission (ECME) and pulsar radio emission. Plasma emission is a multi-stage mechanism with the first stage being generation of Langmuir waves through a streaming instability, and subsequent stages involving partial conversion of the Langmuir turbulence into escaping radiation at the fundamental (F) and second harmonic (H) of the plasma frequency. The early development and subsequent refinements of the theory, motivated by application to solar radio bursts, are reviewed. The driver of the instability is faster electrons outpacing slower electrons, resulting in a positive gradient (df(v\u2016)/dv\u2016>0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm{{d}}f(v_\\parallel )/\\mathrm{{d}}v_\\parallel >0$$\\end{document}) at the front of the beam. Despite many successes of the theory, there is no widely accepted explanation for type\u00a0I bursts and various radio continua. The earliest models for ECME were purely theoretical, and the theory was later adapted and applied to Jupiter (DAM), the Earth (AKR), solar spike bursts and flare stars. ECME strongly favors the x\u00a0mode, whereas plasma emission favors the o\u00a0mode. Two drivers for ECME are a ring feature (implying df(v)/dv>0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm{{d}}f(v)/\\mathrm{{d}}v>0$$\\end{document}) and a loss-cone feature. Loss-cone-driven ECME was initially favored for all applications. The now favored driver for AKR is the ring-feature in a horseshoe distribution, which results from acceleration by a parallel electric on converging magnetic field lines. The driver in DAM and solar and stellar applications is uncertain. The pulsar radio emission mechanism remains an enigma. Ingredients needed in discussing possible mechanisms are reviewed: general properties of pulsars, pulsar electrodynamics, the properties of pulsar plasma and wave dispersion in such plasma. Four specific emission mechanisms (curvature emission, linear acceleration emission, relativistic plasma emission and anomalous Doppler emission) are discussed and it is argued that all encounter difficulties. Coherent radio emission from extensive air showers in the Earth\u2019s atmosphere is reviewed briefly. The difference in theoretical approach from astrophysical theories is pointed out and discussed. Fine structures in DAM and in pulsar radio emission are discussed, and it is suggested that trapping in a large-amplitude wave, as in a model for discrete VLF emission, provides a plausible explanation. A possible direct measure of coherence is pointed out.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s41614-017-0007-0", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5128702", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1290469", 
            "issn": [
              "2367-3192"
            ], 
            "name": "Reviews of Modern Plasma Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "keywords": [
          "electron cyclotron maser emission", 
          "pulsar radio emission", 
          "plasma emission", 
          "radio emission", 
          "emission mechanism", 
          "pulsar radio emission mechanism", 
          "solar spike bursts", 
          "cyclotron maser emission", 
          "coherent radio emission", 
          "radio astronomical sources", 
          "loss cone feature", 
          "specific emission mechanism", 
          "solar radio bursts", 
          "coherent emission mechanisms", 
          "radio emission mechanism", 
          "magnetic field lines", 
          "extensive air showers", 
          "discrete VLF emissions", 
          "large amplitude waves", 
          "Parallel Electric", 
          "astrophysical plasmas", 
          "pulsar plasma", 
          "Langmuir waves", 
          "radio continuum", 
          "plasma frequency", 
          "flare stars", 
          "such plasmas", 
          "coherent emission", 
          "radio bursts", 
          "horseshoe distribution", 
          "astronomical sources", 
          "fast electrons", 
          "slow electrons", 
          "stellar applications", 
          "pulsar electrodynamics", 
          "air showers", 
          "Langmuir turbulence", 
          "VLF emissions", 
          "field lines", 
          "maser emission", 
          "astrophysical theory", 
          "Earth's atmosphere", 
          "wave dispersion", 
          "fine structure", 
          "electrons", 
          "emission", 
          "general properties", 
          "plasma", 
          "positive gradient", 
          "theory", 
          "waves", 
          "ring features", 
          "theoretical approach", 
          "pulsars", 
          "bursts", 
          "stars", 
          "electrodynamics", 
          "Jupiter", 
          "atmosphere", 
          "earlier models", 
          "beam", 
          "showers", 
          "radiation", 
          "mode", 
          "direct measure", 
          "instability", 
          "coherence", 
          "turbulence", 
          "dispersion", 
          "properties", 
          "Electric", 
          "model", 
          "applications", 
          "plausible explanation", 
          "multi-stage mechanism", 
          "continuum", 
          "Earth", 
          "acceleration", 
          "partial conversion", 
          "spike bursts", 
          "first stage", 
          "subsequent refinement", 
          "possible mechanism", 
          "explanation", 
          "structure", 
          "frequency", 
          "distribution", 
          "source", 
          "generation", 
          "front", 
          "gradient", 
          "approach", 
          "fundamentals", 
          "mechanism", 
          "features", 
          "lines", 
          "AKR", 
          "refinement", 
          "conversion", 
          "subsequent stages", 
          "difficulties", 
          "types", 
          "ingredients", 
          "example", 
          "measures", 
          "enigma", 
          "stage", 
          "drivers", 
          "dams", 
          "development", 
          "differences", 
          "success", 
          "early development"
        ], 
        "name": "Coherent emission mechanisms in astrophysical plasmas", 
        "pagination": "5", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090893220"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41614-017-0007-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41614-017-0007-0", 
          "https://app.dimensions.ai/details/publication/pub.1090893220"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_734.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s41614-017-0007-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41614-017-0007-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41614-017-0007-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41614-017-0007-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41614-017-0007-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    382 TRIPLES      21 PREDICATES      190 URIs      129 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41614-017-0007-0 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 anzsrc-for:0202
    4 schema:author Nfd17013c0f8849df857e106353fe657e
    5 schema:citation sg:pub.10.1007/978-1-4614-4045-1
    6 sg:pub.10.1007/978-3-319-18359-6_3
    7 sg:pub.10.1007/978-3-642-03141-0
    8 sg:pub.10.1007/978-3-642-20015-1
    9 sg:pub.10.1007/978-94-011-7912-6_20
    10 sg:pub.10.1007/bf00149110
    11 sg:pub.10.1007/bf00149813
    12 sg:pub.10.1007/bf00151214
    13 sg:pub.10.1007/bf00152366
    14 sg:pub.10.1007/bf00152367
    15 sg:pub.10.1007/bf00152393
    16 sg:pub.10.1007/bf00153224
    17 sg:pub.10.1007/bf00153225
    18 sg:pub.10.1007/bf00153387
    19 sg:pub.10.1007/bf00153448
    20 sg:pub.10.1007/bf00154818
    21 sg:pub.10.1007/bf00155756
    22 sg:pub.10.1007/bf00155758
    23 sg:pub.10.1007/bf00156854
    24 sg:pub.10.1007/bf00162389
    25 sg:pub.10.1007/bf00174543
    26 sg:pub.10.1007/bf00196194
    27 sg:pub.10.1007/bf00212238
    28 sg:pub.10.1007/bf00224846
    29 sg:pub.10.1007/bf00239799
    30 sg:pub.10.1007/bf00637577
    31 sg:pub.10.1007/bf00638987
    32 sg:pub.10.1007/bf00646233
    33 sg:pub.10.1007/bf00650180
    34 sg:pub.10.1007/bf01005694
    35 sg:pub.10.1007/bf01005818
    36 sg:pub.10.1007/bf01011364
    37 sg:pub.10.1007/bf01014857
    38 sg:pub.10.1007/bf02676485
    39 sg:pub.10.1007/bf02714830
    40 sg:pub.10.1007/s00159-006-0001-y
    41 sg:pub.10.1007/s11207-012-0001-1
    42 sg:pub.10.1007/s11207-016-1006-y
    43 sg:pub.10.1007/s11214-006-9141-7
    44 sg:pub.10.1007/s11214-011-9793-9
    45 sg:pub.10.1007/s11214-013-9963-z
    46 sg:pub.10.1023/a:1010310210707
    47 sg:pub.10.1038/172533a0
    48 sg:pub.10.1038/198020a0
    49 sg:pub.10.1038/2031008a0
    50 sg:pub.10.1038/2111070a0
    51 sg:pub.10.1038/217935a0
    52 sg:pub.10.1038/219145a0
    53 sg:pub.10.1038/225612a0
    54 sg:pub.10.1038/nature03614
    55 sg:pub.10.1134/s106377371209006x
    56 sg:pub.10.1134/s1063780x13050036
    57 schema:datePublished 2017-07-25
    58 schema:datePublishedReg 2017-07-25
    59 schema:description Three known examples of coherent emission in radio astronomical sources are reviewed: plasma emission, electron cyclotron maser emission (ECME) and pulsar radio emission. Plasma emission is a multi-stage mechanism with the first stage being generation of Langmuir waves through a streaming instability, and subsequent stages involving partial conversion of the Langmuir turbulence into escaping radiation at the fundamental (F) and second harmonic (H) of the plasma frequency. The early development and subsequent refinements of the theory, motivated by application to solar radio bursts, are reviewed. The driver of the instability is faster electrons outpacing slower electrons, resulting in a positive gradient (df(v‖)/dv‖>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{d}}f(v_\parallel )/\mathrm{{d}}v_\parallel >0$$\end{document}) at the front of the beam. Despite many successes of the theory, there is no widely accepted explanation for type I bursts and various radio continua. The earliest models for ECME were purely theoretical, and the theory was later adapted and applied to Jupiter (DAM), the Earth (AKR), solar spike bursts and flare stars. ECME strongly favors the x mode, whereas plasma emission favors the o mode. Two drivers for ECME are a ring feature (implying df(v)/dv>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{d}}f(v)/\mathrm{{d}}v>0$$\end{document}) and a loss-cone feature. Loss-cone-driven ECME was initially favored for all applications. The now favored driver for AKR is the ring-feature in a horseshoe distribution, which results from acceleration by a parallel electric on converging magnetic field lines. The driver in DAM and solar and stellar applications is uncertain. The pulsar radio emission mechanism remains an enigma. Ingredients needed in discussing possible mechanisms are reviewed: general properties of pulsars, pulsar electrodynamics, the properties of pulsar plasma and wave dispersion in such plasma. Four specific emission mechanisms (curvature emission, linear acceleration emission, relativistic plasma emission and anomalous Doppler emission) are discussed and it is argued that all encounter difficulties. Coherent radio emission from extensive air showers in the Earth’s atmosphere is reviewed briefly. The difference in theoretical approach from astrophysical theories is pointed out and discussed. Fine structures in DAM and in pulsar radio emission are discussed, and it is suggested that trapping in a large-amplitude wave, as in a model for discrete VLF emission, provides a plausible explanation. A possible direct measure of coherence is pointed out.
    60 schema:genre article
    61 schema:isAccessibleForFree true
    62 schema:isPartOf N56d7dd27bd564bbeaedc3d13beadcaca
    63 N74dc369519d84cec8632066778e6e62e
    64 sg:journal.1290469
    65 schema:keywords AKR
    66 Earth
    67 Earth's atmosphere
    68 Electric
    69 Jupiter
    70 Langmuir turbulence
    71 Langmuir waves
    72 Parallel Electric
    73 VLF emissions
    74 acceleration
    75 air showers
    76 applications
    77 approach
    78 astronomical sources
    79 astrophysical plasmas
    80 astrophysical theory
    81 atmosphere
    82 beam
    83 bursts
    84 coherence
    85 coherent emission
    86 coherent emission mechanisms
    87 coherent radio emission
    88 continuum
    89 conversion
    90 cyclotron maser emission
    91 dams
    92 development
    93 differences
    94 difficulties
    95 direct measure
    96 discrete VLF emissions
    97 dispersion
    98 distribution
    99 drivers
    100 earlier models
    101 early development
    102 electrodynamics
    103 electron cyclotron maser emission
    104 electrons
    105 emission
    106 emission mechanism
    107 enigma
    108 example
    109 explanation
    110 extensive air showers
    111 fast electrons
    112 features
    113 field lines
    114 fine structure
    115 first stage
    116 flare stars
    117 frequency
    118 front
    119 fundamentals
    120 general properties
    121 generation
    122 gradient
    123 horseshoe distribution
    124 ingredients
    125 instability
    126 large amplitude waves
    127 lines
    128 loss cone feature
    129 magnetic field lines
    130 maser emission
    131 measures
    132 mechanism
    133 mode
    134 model
    135 multi-stage mechanism
    136 partial conversion
    137 plasma
    138 plasma emission
    139 plasma frequency
    140 plausible explanation
    141 positive gradient
    142 possible mechanism
    143 properties
    144 pulsar electrodynamics
    145 pulsar plasma
    146 pulsar radio emission
    147 pulsar radio emission mechanism
    148 pulsars
    149 radiation
    150 radio astronomical sources
    151 radio bursts
    152 radio continuum
    153 radio emission
    154 radio emission mechanism
    155 refinement
    156 ring features
    157 showers
    158 slow electrons
    159 solar radio bursts
    160 solar spike bursts
    161 source
    162 specific emission mechanism
    163 spike bursts
    164 stage
    165 stars
    166 stellar applications
    167 structure
    168 subsequent refinement
    169 subsequent stages
    170 success
    171 such plasmas
    172 theoretical approach
    173 theory
    174 turbulence
    175 types
    176 wave dispersion
    177 waves
    178 schema:name Coherent emission mechanisms in astrophysical plasmas
    179 schema:pagination 5
    180 schema:productId N99cf14d5b1ce4d0aa0cfe188714ca4df
    181 Nf8187c60985049188a7dc68017f010bb
    182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090893220
    183 https://doi.org/10.1007/s41614-017-0007-0
    184 schema:sdDatePublished 2022-11-24T21:01
    185 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    186 schema:sdPublisher N9046859feacc4fcea52d9b4e336906a3
    187 schema:url https://doi.org/10.1007/s41614-017-0007-0
    188 sgo:license sg:explorer/license/
    189 sgo:sdDataset articles
    190 rdf:type schema:ScholarlyArticle
    191 N56d7dd27bd564bbeaedc3d13beadcaca schema:issueNumber 1
    192 rdf:type schema:PublicationIssue
    193 N6cb5b3d9b69d44ed9d8fbb08e0805897 schema:affiliation grid-institutes:grid.1013.3
    194 schema:familyName Melrose
    195 schema:givenName D. B.
    196 rdf:type schema:Person
    197 N74dc369519d84cec8632066778e6e62e schema:volumeNumber 1
    198 rdf:type schema:PublicationVolume
    199 N9046859feacc4fcea52d9b4e336906a3 schema:name Springer Nature - SN SciGraph project
    200 rdf:type schema:Organization
    201 N99cf14d5b1ce4d0aa0cfe188714ca4df schema:name dimensions_id
    202 schema:value pub.1090893220
    203 rdf:type schema:PropertyValue
    204 Nf8187c60985049188a7dc68017f010bb schema:name doi
    205 schema:value 10.1007/s41614-017-0007-0
    206 rdf:type schema:PropertyValue
    207 Nfd17013c0f8849df857e106353fe657e rdf:first N6cb5b3d9b69d44ed9d8fbb08e0805897
    208 rdf:rest rdf:nil
    209 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Physical Sciences
    211 rdf:type schema:DefinedTerm
    212 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    213 schema:name Astronomical and Space Sciences
    214 rdf:type schema:DefinedTerm
    215 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    217 rdf:type schema:DefinedTerm
    218 sg:grant.5128702 http://pending.schema.org/fundedItem sg:pub.10.1007/s41614-017-0007-0
    219 rdf:type schema:MonetaryGrant
    220 sg:journal.1290469 schema:issn 2367-3192
    221 schema:name Reviews of Modern Plasma Physics
    222 schema:publisher Springer Nature
    223 rdf:type schema:Periodical
    224 sg:pub.10.1007/978-1-4614-4045-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014559922
    225 https://doi.org/10.1007/978-1-4614-4045-1
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/978-3-319-18359-6_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052090371
    228 https://doi.org/10.1007/978-3-319-18359-6_3
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/978-3-642-03141-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003834409
    231 https://doi.org/10.1007/978-3-642-03141-0
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/978-3-642-20015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001340025
    234 https://doi.org/10.1007/978-3-642-20015-1
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/978-94-011-7912-6_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089760806
    237 https://doi.org/10.1007/978-94-011-7912-6_20
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/bf00149110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003089073
    240 https://doi.org/10.1007/bf00149110
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/bf00149813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049893792
    243 https://doi.org/10.1007/bf00149813
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/bf00151214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024183222
    246 https://doi.org/10.1007/bf00151214
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/bf00152366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005055832
    249 https://doi.org/10.1007/bf00152366
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/bf00152367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022979877
    252 https://doi.org/10.1007/bf00152367
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/bf00152393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000365645
    255 https://doi.org/10.1007/bf00152393
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/bf00153224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000659434
    258 https://doi.org/10.1007/bf00153224
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/bf00153225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034387801
    261 https://doi.org/10.1007/bf00153225
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/bf00153387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143685
    264 https://doi.org/10.1007/bf00153387
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/bf00153448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043672764
    267 https://doi.org/10.1007/bf00153448
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/bf00154818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051989827
    270 https://doi.org/10.1007/bf00154818
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/bf00155756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012874038
    273 https://doi.org/10.1007/bf00155756
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/bf00155758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024817020
    276 https://doi.org/10.1007/bf00155758
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/bf00156854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025270672
    279 https://doi.org/10.1007/bf00156854
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/bf00162389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012291937
    282 https://doi.org/10.1007/bf00162389
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/bf00174543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012191333
    285 https://doi.org/10.1007/bf00174543
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/bf00196194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019479270
    288 https://doi.org/10.1007/bf00196194
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/bf00212238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004562942
    291 https://doi.org/10.1007/bf00212238
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/bf00224846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020459797
    294 https://doi.org/10.1007/bf00224846
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/bf00239799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000903231
    297 https://doi.org/10.1007/bf00239799
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/bf00637577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006178767
    300 https://doi.org/10.1007/bf00637577
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1007/bf00638987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046647128
    303 https://doi.org/10.1007/bf00638987
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1007/bf00646233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052505290
    306 https://doi.org/10.1007/bf00646233
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1007/bf00650180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021545344
    309 https://doi.org/10.1007/bf00650180
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1007/bf01005694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019948098
    312 https://doi.org/10.1007/bf01005694
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/bf01005818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049348955
    315 https://doi.org/10.1007/bf01005818
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1007/bf01011364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006387170
    318 https://doi.org/10.1007/bf01011364
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1007/bf01014857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009506234
    321 https://doi.org/10.1007/bf01014857
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1007/bf02676485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046219533
    324 https://doi.org/10.1007/bf02676485
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1007/bf02714830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013199932
    327 https://doi.org/10.1007/bf02714830
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1007/s00159-006-0001-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023849697
    330 https://doi.org/10.1007/s00159-006-0001-y
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1007/s11207-012-0001-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000623005
    333 https://doi.org/10.1007/s11207-012-0001-1
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1007/s11207-016-1006-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049913287
    336 https://doi.org/10.1007/s11207-016-1006-y
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1007/s11214-006-9141-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025387136
    339 https://doi.org/10.1007/s11214-006-9141-7
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1007/s11214-011-9793-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016877026
    342 https://doi.org/10.1007/s11214-011-9793-9
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1007/s11214-013-9963-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039800393
    345 https://doi.org/10.1007/s11214-013-9963-z
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1023/a:1010310210707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043392687
    348 https://doi.org/10.1023/a:1010310210707
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/172533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047777677
    351 https://doi.org/10.1038/172533a0
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/198020a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053483025
    354 https://doi.org/10.1038/198020a0
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1038/2031008a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025337700
    357 https://doi.org/10.1038/2031008a0
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1038/2111070a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046903083
    360 https://doi.org/10.1038/2111070a0
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/217935a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008268671
    363 https://doi.org/10.1038/217935a0
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/219145a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012856478
    366 https://doi.org/10.1038/219145a0
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/225612a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016596218
    369 https://doi.org/10.1038/225612a0
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/nature03614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043952395
    372 https://doi.org/10.1038/nature03614
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1134/s106377371209006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009699110
    375 https://doi.org/10.1134/s106377371209006x
    376 rdf:type schema:CreativeWork
    377 sg:pub.10.1134/s1063780x13050036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038510518
    378 https://doi.org/10.1134/s1063780x13050036
    379 rdf:type schema:CreativeWork
    380 grid-institutes:grid.1013.3 schema:alternateName SIfA, School of Physics, The University of Sydney, 2006, Sydney, NSW, Australia
    381 schema:name SIfA, School of Physics, The University of Sydney, 2006, Sydney, NSW, Australia
    382 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...