The Predictive Content of Business Survey Indicators: Evidence from SIGE View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04-11

AUTHORS

Tatiana Cesaroni, Stefano Iezzi

ABSTRACT

Business surveys indicators represent an important tool in economic analysis and forecasting practices. While there is wide consensus on the coincident properties of such data, there is mixed evidence on their ability to forecast macroeconomic developments in the short term. In this study we extend the previous research on business surveys predictive content by examining for the first time the leading properties of the main business survey indicators coming from the Italian survey on inflation and growth expectations (SIGE). To this end we provide a complete characterization of the business cycle leading/coincident properties of SIGE data (turning points, average duration, synchronization etc.) with respect to the National Accounts reference series using both non parametric approaches (i.e. Harding and Pagan in J Monet Econ 49(2):365–381, 2002) and econometric models (discrete and continuous dynamic single equation models). Overall the results indicate that in both the approaches SIGE business indicators are able to early detect turning points of their corresponding national account reference series in almost all cases. Overall, the average lead of troughs is found to be higher than the average lead of peaks. More... »

PAGES

75-104

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41549-017-0015-8

DOI

http://dx.doi.org/10.1007/s41549-017-0015-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084740341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Economics and Statistics Department, Bank of Italy, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.466503.2", 
          "name": [
            "Economics and Statistics Department, Bank of Italy, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cesaroni", 
        "givenName": "Tatiana", 
        "id": "sg:person.014367034361.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367034361.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Economics and Statistics Department, Bank of Italy, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.466503.2", 
          "name": [
            "Economics and Statistics Department, Bank of Italy, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iezzi", 
        "givenName": "Stefano", 
        "id": "sg:person.07666744316.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07666744316.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00181-010-0390-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005548977", 
          "https://doi.org/10.1007/s00181-010-0390-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00181-004-0203-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017245174", 
          "https://doi.org/10.1007/s00181-004-0203-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-11", 
    "datePublishedReg": "2017-04-11", 
    "description": "Business surveys indicators represent an important tool in economic analysis and forecasting practices. While there is wide consensus on the coincident properties of such data, there is mixed evidence on their ability to forecast macroeconomic developments in the short term. In this study we extend the previous research on business surveys predictive content by examining for the first time the leading properties of the main business survey indicators coming from the Italian survey on inflation and growth expectations (SIGE). To this end we provide a complete characterization of the business cycle leading/coincident properties of SIGE data (turning points, average duration, synchronization etc.) with respect to the National Accounts reference series using both non parametric approaches (i.e. Harding and Pagan in J Monet Econ 49(2):365\u2013381, 2002) and econometric models (discrete and continuous dynamic single equation models). Overall the results indicate that in both the approaches SIGE business indicators are able to early detect turning points of their corresponding national account reference series in almost all cases. Overall, the average lead of troughs is found to be higher than the average lead of peaks.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41549-017-0015-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1290432", 
        "issn": [
          "2509-7962", 
          "2509-7970"
        ], 
        "name": "Journal of Business Cycle Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "business survey indicators", 
      "survey indicators", 
      "predictive content", 
      "coincident properties", 
      "average lead", 
      "non-parametric approach", 
      "business cycle", 
      "macroeconomic developments", 
      "econometric model", 
      "growth expectations", 
      "economic analysis", 
      "business indicators", 
      "reference series", 
      "forecasting practices", 
      "mixed evidence", 
      "parametric approach", 
      "Italian survey", 
      "short term", 
      "wide consensus", 
      "indicators", 
      "inflation", 
      "previous research", 
      "evidence", 
      "expectations", 
      "such data", 
      "complete characterization", 
      "survey", 
      "data", 
      "important tool", 
      "model", 
      "series", 
      "consensus", 
      "terms", 
      "research", 
      "approach", 
      "development", 
      "analysis", 
      "lead", 
      "respect", 
      "cycle", 
      "results", 
      "point", 
      "cases", 
      "practice", 
      "tool", 
      "end", 
      "time", 
      "study", 
      "ability", 
      "trough", 
      "first time", 
      "properties", 
      "content", 
      "peak", 
      "characterization", 
      "SiGe"
    ], 
    "name": "The Predictive Content of Business Survey Indicators: Evidence from SIGE", 
    "pagination": "75-104", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084740341"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41549-017-0015-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41549-017-0015-8", 
      "https://app.dimensions.ai/details/publication/pub.1084740341"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_748.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41549-017-0015-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41549-017-0015-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41549-017-0015-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41549-017-0015-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41549-017-0015-8'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      83 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41549-017-0015-8 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 anzsrc-for:1403
4 schema:author N09b01c84112843279a278dfc2340cc79
5 schema:citation sg:pub.10.1007/s00181-004-0203-y
6 sg:pub.10.1007/s00181-010-0390-7
7 schema:datePublished 2017-04-11
8 schema:datePublishedReg 2017-04-11
9 schema:description Business surveys indicators represent an important tool in economic analysis and forecasting practices. While there is wide consensus on the coincident properties of such data, there is mixed evidence on their ability to forecast macroeconomic developments in the short term. In this study we extend the previous research on business surveys predictive content by examining for the first time the leading properties of the main business survey indicators coming from the Italian survey on inflation and growth expectations (SIGE). To this end we provide a complete characterization of the business cycle leading/coincident properties of SIGE data (turning points, average duration, synchronization etc.) with respect to the National Accounts reference series using both non parametric approaches (i.e. Harding and Pagan in J Monet Econ 49(2):365–381, 2002) and econometric models (discrete and continuous dynamic single equation models). Overall the results indicate that in both the approaches SIGE business indicators are able to early detect turning points of their corresponding national account reference series in almost all cases. Overall, the average lead of troughs is found to be higher than the average lead of peaks.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N69b053978be8411882188e205b3a7919
13 Nb5fc2b7dca194ea08cbb26ae995371a9
14 sg:journal.1290432
15 schema:keywords Italian survey
16 SiGe
17 ability
18 analysis
19 approach
20 average lead
21 business cycle
22 business indicators
23 business survey indicators
24 cases
25 characterization
26 coincident properties
27 complete characterization
28 consensus
29 content
30 cycle
31 data
32 development
33 econometric model
34 economic analysis
35 end
36 evidence
37 expectations
38 first time
39 forecasting practices
40 growth expectations
41 important tool
42 indicators
43 inflation
44 lead
45 macroeconomic developments
46 mixed evidence
47 model
48 non-parametric approach
49 parametric approach
50 peak
51 point
52 practice
53 predictive content
54 previous research
55 properties
56 reference series
57 research
58 respect
59 results
60 series
61 short term
62 study
63 such data
64 survey
65 survey indicators
66 terms
67 time
68 tool
69 trough
70 wide consensus
71 schema:name The Predictive Content of Business Survey Indicators: Evidence from SIGE
72 schema:pagination 75-104
73 schema:productId N5214f81c6f214aa7a5a289397ebf142e
74 Nfe9572832d374044bd9d47e797d18e3c
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084740341
76 https://doi.org/10.1007/s41549-017-0015-8
77 schema:sdDatePublished 2022-08-04T17:05
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N4c8c27cb759d4e22a3414841604752ca
80 schema:url https://doi.org/10.1007/s41549-017-0015-8
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N09b01c84112843279a278dfc2340cc79 rdf:first sg:person.014367034361.54
85 rdf:rest N105e5fe028c34715aab2eca49df1d0db
86 N105e5fe028c34715aab2eca49df1d0db rdf:first sg:person.07666744316.97
87 rdf:rest rdf:nil
88 N4c8c27cb759d4e22a3414841604752ca schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N5214f81c6f214aa7a5a289397ebf142e schema:name dimensions_id
91 schema:value pub.1084740341
92 rdf:type schema:PropertyValue
93 N69b053978be8411882188e205b3a7919 schema:volumeNumber 13
94 rdf:type schema:PublicationVolume
95 Nb5fc2b7dca194ea08cbb26ae995371a9 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 Nfe9572832d374044bd9d47e797d18e3c schema:name doi
98 schema:value 10.1007/s41549-017-0015-8
99 rdf:type schema:PropertyValue
100 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
101 schema:name Economics
102 rdf:type schema:DefinedTerm
103 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
104 schema:name Applied Economics
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
107 schema:name Econometrics
108 rdf:type schema:DefinedTerm
109 sg:journal.1290432 schema:issn 2509-7962
110 2509-7970
111 schema:name Journal of Business Cycle Research
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.014367034361.54 schema:affiliation grid-institutes:grid.466503.2
115 schema:familyName Cesaroni
116 schema:givenName Tatiana
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367034361.54
118 rdf:type schema:Person
119 sg:person.07666744316.97 schema:affiliation grid-institutes:grid.466503.2
120 schema:familyName Iezzi
121 schema:givenName Stefano
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07666744316.97
123 rdf:type schema:Person
124 sg:pub.10.1007/s00181-004-0203-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017245174
125 https://doi.org/10.1007/s00181-004-0203-y
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00181-010-0390-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005548977
128 https://doi.org/10.1007/s00181-010-0390-7
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.466503.2 schema:alternateName Economics and Statistics Department, Bank of Italy, Rome, Italy
131 schema:name Economics and Statistics Department, Bank of Italy, Rome, Italy
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...