Analysing spatial patterns and trend of future urban expansion using SLEUTH View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-23

AUTHORS

M. C. Chandan, G. Nimish, H. A. Bharath

ABSTRACT

With the onset of rapid urban growth in the past 3 decades, a developing country for instance India, Africa, etc. has resulted in climatic and environmental changes severely. Pace of urban growth has increased in India post 2000’s because of key driving economic factors coupled with industrial development promoting job opportunities and promising better life style. This has led to cities expanding towards periphery and rural neighbourhood causing urban sprawl. Continuous increase in the built-up area is also responsible for rise in the surface temperature modifying the rainfall patterns and affecting the biodiversity of the region. This communication focuses mainly on the recent urban growth challenges and changing land surface temperature by developing Indian cities with very minimum landscape to house burgeoning population, immediate strategies and action-plan required to mitigate negative environmental impacts and effects on human beings. Further, the study attempts to correlate the dynamic land use change, land cover, land surface temperature and future urban growth scenario for one of the most systematically planned city of India, Chandigarh. Analysis was performed using open source coding and software platforms such as GRASS, QGIS and shell scripting. The study elaborates land use modelling for the year 2025 by adopting cellular automata based open source SLEUTH model The documentation and source code of SLEUTH model are publically available. The model was tested and calibrated in three different modes: coarse, fine and full resolution. The calibration mode showed high spread coefficient suggesting the urban sprawl would take organic growth. Open source software and coding would help in increased scientific output as it would help researchers understand the code that is being implemented and helps in improvisation of exiting codes to variety of applications. Results of this study would help in developing necessary policy measures and sustainable actions that are required to reduce anthropogenic effects on urban and natural environment. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41324-019-00262-4

DOI

http://dx.doi.org/10.1007/s41324-019-00262-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112965957


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "Ranbir and Chitra Gupta School of Infrastructure Design and Management, Indian Institute of Technology Kharagpur, 721302, Kharagpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandan", 
        "givenName": "M. C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "Ranbir and Chitra Gupta School of Infrastructure Design and Management, Indian Institute of Technology Kharagpur, 721302, Kharagpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nimish", 
        "givenName": "G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "Ranbir and Chitra Gupta School of Infrastructure Design and Management, Indian Institute of Technology Kharagpur, 721302, Kharagpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bharath", 
        "givenName": "H. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0198-9715(02)00066-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003900800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0198-9715(02)00066-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003900800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/10/8/084010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004334599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30479-1_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006833976", 
          "https://doi.org/10.1007/978-3-540-30479-1_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0198-9715(01)00014-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006985733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican1070-120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007582166", 
          "https://doi.org/10.1038/scientificamerican1070-120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2015.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010114681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10708-013-9515-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010456445", 
          "https://doi.org/10.1007/s10708-013-9515-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0965431042000312424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015190900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2006.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018184623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021302824331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018272152", 
          "https://doi.org/10.1023/a:1021302824331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2003.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018703269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658810410001713407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019272740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-8095(94)00066-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019891361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9671.2007.01031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021038541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2014.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025512188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658810902984228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026736331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00045608.2014.892338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026882033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2012.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028001649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2005.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029670285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-005-0140-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031497162", 
          "https://doi.org/10.1007/s00704-005-0140-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-005-0140-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031497162", 
          "https://doi.org/10.1007/s00704-005-0140-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1365881031000086965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038609454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70202067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038819061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10887-015-9121-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039163778", 
          "https://doi.org/10.1007/s10887-015-9121-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jgis.2016.82013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039251590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cities.2008.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039540166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-014-3779-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040769706", 
          "https://doi.org/10.1007/s11356-014-3779-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-016-5457-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046403804", 
          "https://doi.org/10.1007/s12665-016-5457-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2015.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051325238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051859425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051859425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/b2983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052330828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/b2983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052330828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrs.2017.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053875070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijhst.2015.071348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067460906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3973169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070485173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr001063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071158286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2017.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090327766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2017.06.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090370380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2017.06.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090370380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrs.2017.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091419662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40808-018-0463-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103638394", 
          "https://doi.org/10.1007/s40808-018-0463-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40808-018-0463-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103638394", 
          "https://doi.org/10.1007/s40808-018-0463-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420055139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/i2ct.2018.8529459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109824392"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-23", 
    "datePublishedReg": "2019-03-23", 
    "description": "With the onset of rapid urban growth in the past 3 decades, a developing country for instance India, Africa, etc. has resulted in climatic and environmental changes severely. Pace of urban growth has increased in India post 2000\u2019s because of key driving economic factors coupled with industrial development promoting job opportunities and promising better life style. This has led to cities expanding towards periphery and rural neighbourhood causing urban sprawl. Continuous increase in the built-up area is also responsible for rise in the surface temperature modifying the rainfall patterns and affecting the biodiversity of the region. This communication focuses mainly on the recent urban growth challenges and changing land surface temperature by developing Indian cities with very minimum landscape to house burgeoning population, immediate strategies and action-plan required to mitigate negative environmental impacts and effects on human beings. Further, the study attempts to correlate the dynamic land use change, land cover, land surface temperature and future urban growth scenario for one of the most systematically planned city of India, Chandigarh. Analysis was performed using open source coding and software platforms such as GRASS, QGIS and shell scripting. The study elaborates land use modelling for the year 2025 by adopting cellular automata based open source SLEUTH model The documentation and source code of SLEUTH model are publically available. The model was tested and calibrated in three different modes: coarse, fine and full resolution. The calibration mode showed high spread coefficient suggesting the urban sprawl would take organic growth. Open source software and coding would help in increased scientific output as it would help researchers understand the code that is being implemented and helps in improvisation of exiting codes to variety of applications. Results of this study would help in developing necessary policy measures and sustainable actions that are required to reduce anthropogenic effects on urban and natural environment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41324-019-00262-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1153043", 
        "issn": [
          "2366-3286", 
          "2366-3294"
        ], 
        "name": "Spatial Information Research", 
        "type": "Periodical"
      }
    ], 
    "name": "Analysing spatial patterns and trend of future urban expansion using SLEUTH", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bfc465e5ce67392b73b2839387bb9e2bd6e3042b0fc9e744c2a62b6029a4afdb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41324-019-00262-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112965957"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41324-019-00262-4", 
      "https://app.dimensions.ai/details/publication/pub.1112965957"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71689_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41324-019-00262-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00262-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00262-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00262-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00262-4'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41324-019-00262-4 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author Ncb41cbff1d7d4fb6af07b3e05d1fa7ab
4 schema:citation sg:pub.10.1007/978-3-540-30479-1_54
5 sg:pub.10.1007/s00704-005-0140-5
6 sg:pub.10.1007/s10708-013-9515-9
7 sg:pub.10.1007/s10887-015-9121-4
8 sg:pub.10.1007/s11356-014-3779-6
9 sg:pub.10.1007/s12665-016-5457-0
10 sg:pub.10.1007/s40808-018-0463-8
11 sg:pub.10.1023/a:1021302824331
12 sg:pub.10.1038/scientificamerican1070-120
13 https://doi.org/10.1016/0169-8095(94)00066-m
14 https://doi.org/10.1016/j.cities.2008.11.005
15 https://doi.org/10.1016/j.ecolmodel.2015.01.029
16 https://doi.org/10.1016/j.ejrs.2017.01.002
17 https://doi.org/10.1016/j.ejrs.2017.08.002
18 https://doi.org/10.1016/j.jag.2003.08.002
19 https://doi.org/10.1016/j.jag.2012.03.005
20 https://doi.org/10.1016/j.jclepro.2015.02.004
21 https://doi.org/10.1016/j.jenvman.2006.07.016
22 https://doi.org/10.1016/j.jenvman.2014.05.014
23 https://doi.org/10.1016/j.jenvman.2017.06.072
24 https://doi.org/10.1016/j.rse.2003.11.005
25 https://doi.org/10.1016/j.rse.2005.11.016
26 https://doi.org/10.1016/j.rse.2017.06.026
27 https://doi.org/10.1016/s0198-9715(01)00014-x
28 https://doi.org/10.1016/s0198-9715(02)00066-2
29 https://doi.org/10.1068/b2983
30 https://doi.org/10.1080/00045608.2014.892338
31 https://doi.org/10.1080/0965431042000312424
32 https://doi.org/10.1080/1365881031000086965
33 https://doi.org/10.1080/13658810410001713407
34 https://doi.org/10.1080/13658810902984228
35 https://doi.org/10.1088/1748-9326/10/8/084010
36 https://doi.org/10.1109/i2ct.2018.8529459
37 https://doi.org/10.1111/j.1467-9671.2007.01031.x
38 https://doi.org/10.1201/9781420055139
39 https://doi.org/10.1504/ijhst.2015.071348
40 https://doi.org/10.2307/3973169
41 https://doi.org/10.3354/cr001063
42 https://doi.org/10.3390/rs70202067
43 https://doi.org/10.4236/jgis.2016.82013
44 schema:datePublished 2019-03-23
45 schema:datePublishedReg 2019-03-23
46 schema:description With the onset of rapid urban growth in the past 3 decades, a developing country for instance India, Africa, etc. has resulted in climatic and environmental changes severely. Pace of urban growth has increased in India post 2000’s because of key driving economic factors coupled with industrial development promoting job opportunities and promising better life style. This has led to cities expanding towards periphery and rural neighbourhood causing urban sprawl. Continuous increase in the built-up area is also responsible for rise in the surface temperature modifying the rainfall patterns and affecting the biodiversity of the region. This communication focuses mainly on the recent urban growth challenges and changing land surface temperature by developing Indian cities with very minimum landscape to house burgeoning population, immediate strategies and action-plan required to mitigate negative environmental impacts and effects on human beings. Further, the study attempts to correlate the dynamic land use change, land cover, land surface temperature and future urban growth scenario for one of the most systematically planned city of India, Chandigarh. Analysis was performed using open source coding and software platforms such as GRASS, QGIS and shell scripting. The study elaborates land use modelling for the year 2025 by adopting cellular automata based open source SLEUTH model The documentation and source code of SLEUTH model are publically available. The model was tested and calibrated in three different modes: coarse, fine and full resolution. The calibration mode showed high spread coefficient suggesting the urban sprawl would take organic growth. Open source software and coding would help in increased scientific output as it would help researchers understand the code that is being implemented and helps in improvisation of exiting codes to variety of applications. Results of this study would help in developing necessary policy measures and sustainable actions that are required to reduce anthropogenic effects on urban and natural environment.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1153043
51 schema:name Analysing spatial patterns and trend of future urban expansion using SLEUTH
52 schema:pagination 1-13
53 schema:productId N00a2a1d43e4244a9bc8bdc065ddb4fde
54 N6ae313d4e1294240aa52a28d77df5892
55 Na5f09bf8ab284f30bd9997292ec6bf57
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112965957
57 https://doi.org/10.1007/s41324-019-00262-4
58 schema:sdDatePublished 2019-04-11T12:58
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N80046b808fc944c7819f59dbe29c434a
61 schema:url https://link.springer.com/10.1007%2Fs41324-019-00262-4
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N00a2a1d43e4244a9bc8bdc065ddb4fde schema:name doi
66 schema:value 10.1007/s41324-019-00262-4
67 rdf:type schema:PropertyValue
68 N49dee2ebbc6d428181bbea694d5bda9f schema:affiliation https://www.grid.ac/institutes/grid.429017.9
69 schema:familyName Bharath
70 schema:givenName H. A.
71 rdf:type schema:Person
72 N6ae313d4e1294240aa52a28d77df5892 schema:name dimensions_id
73 schema:value pub.1112965957
74 rdf:type schema:PropertyValue
75 N7d1c33752a3f4e14a899b819deae2c70 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
76 schema:familyName Chandan
77 schema:givenName M. C.
78 rdf:type schema:Person
79 N80046b808fc944c7819f59dbe29c434a schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N9b28afcff2964e55be36763dfc4a3b50 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
82 schema:familyName Nimish
83 schema:givenName G.
84 rdf:type schema:Person
85 Na5f09bf8ab284f30bd9997292ec6bf57 schema:name readcube_id
86 schema:value bfc465e5ce67392b73b2839387bb9e2bd6e3042b0fc9e744c2a62b6029a4afdb
87 rdf:type schema:PropertyValue
88 Nb78db3e54ebd4146a73bfc360bc4c9bd rdf:first N49dee2ebbc6d428181bbea694d5bda9f
89 rdf:rest rdf:nil
90 Ncb41cbff1d7d4fb6af07b3e05d1fa7ab rdf:first N7d1c33752a3f4e14a899b819deae2c70
91 rdf:rest Nfd5302eeadfc4482addfb950290c3c80
92 Nfd5302eeadfc4482addfb950290c3c80 rdf:first N9b28afcff2964e55be36763dfc4a3b50
93 rdf:rest Nb78db3e54ebd4146a73bfc360bc4c9bd
94 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
95 schema:name Environmental Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
98 schema:name Environmental Science and Management
99 rdf:type schema:DefinedTerm
100 sg:journal.1153043 schema:issn 2366-3286
101 2366-3294
102 schema:name Spatial Information Research
103 rdf:type schema:Periodical
104 sg:pub.10.1007/978-3-540-30479-1_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006833976
105 https://doi.org/10.1007/978-3-540-30479-1_54
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00704-005-0140-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031497162
108 https://doi.org/10.1007/s00704-005-0140-5
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10708-013-9515-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010456445
111 https://doi.org/10.1007/s10708-013-9515-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10887-015-9121-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039163778
114 https://doi.org/10.1007/s10887-015-9121-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11356-014-3779-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040769706
117 https://doi.org/10.1007/s11356-014-3779-6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s12665-016-5457-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046403804
120 https://doi.org/10.1007/s12665-016-5457-0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s40808-018-0463-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103638394
123 https://doi.org/10.1007/s40808-018-0463-8
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1021302824331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018272152
126 https://doi.org/10.1023/a:1021302824331
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/scientificamerican1070-120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007582166
129 https://doi.org/10.1038/scientificamerican1070-120
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0169-8095(94)00066-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1019891361
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.cities.2008.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039540166
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ecolmodel.2015.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051325238
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ejrs.2017.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053875070
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ejrs.2017.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091419662
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jag.2003.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051859425
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jag.2012.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001649
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jclepro.2015.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010114681
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jenvman.2006.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018184623
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jenvman.2014.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025512188
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jenvman.2017.06.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090370380
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.rse.2003.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018703269
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.rse.2005.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029670285
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.rse.2017.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090327766
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0198-9715(01)00014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006985733
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0198-9715(02)00066-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003900800
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1068/b2983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052330828
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/00045608.2014.892338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026882033
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/0965431042000312424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015190900
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/1365881031000086965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038609454
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1080/13658810410001713407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019272740
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1080/13658810902984228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026736331
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1088/1748-9326/10/8/084010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004334599
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/i2ct.2018.8529459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109824392
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/j.1467-9671.2007.01031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021038541
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1201/9781420055139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725850
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1504/ijhst.2015.071348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067460906
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2307/3973169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070485173
186 rdf:type schema:CreativeWork
187 https://doi.org/10.3354/cr001063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071158286
188 rdf:type schema:CreativeWork
189 https://doi.org/10.3390/rs70202067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038819061
190 rdf:type schema:CreativeWork
191 https://doi.org/10.4236/jgis.2016.82013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039251590
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.429017.9 schema:alternateName Indian Institute of Technology Kharagpur
194 schema:name Ranbir and Chitra Gupta School of Infrastructure Design and Management, Indian Institute of Technology Kharagpur, 721302, Kharagpur, India
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...