Tree cover percent investigation with respect to geographical area, vegetation types, agro ecological regions and in agriculture landscape of India: ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-20

AUTHORS

Laxmi Goparaju, Firoz Ahmad

ABSTRACT

This study has utilized the remote sensing and GIS datasets such as tree cover, harmonized land cover, agriculture mask and ancillary source of India for better comprehension of tree cover percent distribution in geographical territory/vegetation classes/agro-ecological zones/agriculture landscapes. The study revealed in the year 2000 the forest area in India was 15.4% of the total geographical area. Furthermore, the total agriculture area in India (including single/double/continuous/rainfed area) for the year 2000 was found 63% of the total geographical area and approximately 10% of the agriculture land retains at least 10% of tree cover which is roughly one-fourth of the total global average. The mean tree cover distribution in various vegetation types was found highest (76.4%) in the category of “Tropical and sub-tropical mountain forests, broadleaved, evergreen > 1000 m”. The vegetation category “Tropical mixed deciduous and dry deciduous forests” occupied high area percent (14.4%) and showed significantly low mean tree cover percent (15.1%). The tree cover percent analysis in various agro-ecological zones of India showed high mean tree cover in those zones where the rainfall is significantly high and soil fertility is adequate such as the categories “North Eastern Hills” (62.5%), “Eastern Himalayas” (60.0%) and “Western Ghats and Coastal Plain” (30.70%). More... »

PAGES

1-9

References to SciGraph publications

  • 2012. South Asian Agroforestry: Traditions, Transformations, and Prospects in AGROFORESTRY - THE FUTURE OF GLOBAL LAND USE
  • 2015-12. Nationwide classification of forest types of India using remote sensing and GIS in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2016-12. Driving force for forest fragmentation explored by land use change in Song watershed, India in SPATIAL INFORMATION RESEARCH
  • 2019-02-14. Geo-spatial perspective of vegetation health evaluation and climate change scenario in India in SPATIAL INFORMATION RESEARCH
  • 2018-10. Geospatial application for agroforestry suitability mapping based on FAO guideline: case study of Lohardaga, Jharkhand State of India in SPATIAL INFORMATION RESEARCH
  • 2018. Biodiversity Hotspots in India in INDIAN HOTSPOTS
  • 2018-12. A geospatial analysis of climate variability and its impact on forest fire: a case study in Orissa state of India in SPATIAL INFORMATION RESEARCH
  • 2005-06. Forest fragmentation and its impact on species diversity: an analysis using remote sensing and GIS in BIODIVERSITY AND CONSERVATION
  • 2019-01-17. Analysis of forest health and socioeconomic dimension in climate change scenario and its future impacts: remote sensing and GIS approach in SPATIAL INFORMATION RESEARCH
  • 2018-05-07. Agroforestry suitability mapping of India: geospatial approach based on FAO guidelines in AGROFORESTRY SYSTEMS
  • 2017-10. Appraisal of long-term shoreline oscillations from a part of coastal zones of Sundarban delta, Eastern India: a study based on geospatial technology in SPATIAL INFORMATION RESEARCH
  • 2017-04. Understanding patterns of tree adoption on farms in semi-arid and sub-humid Ethiopia in AGROFORESTRY SYSTEMS
  • 2016-09. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets in SCIENTIFIC REPORTS
  • 2017-02. Pollution tolerance performance index for plant species using geospatial technology: evidence from Kolaghat Thermal Plant area, West Bengal, India in SPATIAL INFORMATION RESEARCH
  • 2000-02. Biodiversity hotspots for conservation priorities in NATURE
  • 2017-06. Assessing anthropogenic disturbance on forest health based on fragment grading in Durgapur Forest Range, West Bengal, India in SPATIAL INFORMATION RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41324-019-00261-5

    DOI

    http://dx.doi.org/10.1007/s41324-019-00261-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112896102


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Science and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Vindhyan Ecology and Natural History Foundation, Mirzapur, Uttar Pradesh, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goparaju", 
            "givenName": "Laxmi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Vindhyan Ecology and Natural History Foundation, Mirzapur, Uttar Pradesh, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ahmad", 
            "givenName": "Firoz", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.rse.2004.12.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005035388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jag.2005.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007835963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431161.2016.1142684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012043552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-015-4990-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014322997", 
              "https://doi.org/10.1007/s10661-015-4990-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep29987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020829888", 
              "https://doi.org/10.1038/srep29987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021819037", 
              "https://doi.org/10.1038/35002501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021819037", 
              "https://doi.org/10.1038/35002501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-016-0062-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025992374", 
              "https://doi.org/10.1007/s41324-016-0062-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-016-0062-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025992374", 
              "https://doi.org/10.1007/s41324-016-0062-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1111772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032385493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10457-016-9926-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035978678", 
              "https://doi.org/10.1007/s10457-016-9926-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10457-016-9926-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035978678", 
              "https://doi.org/10.1007/s10457-016-9926-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2486.2000.00296.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039600662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1244693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043560141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10531-004-0695-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048141159", 
              "https://doi.org/10.1007/s10531-004-0695-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10531-004-0695-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048141159", 
              "https://doi.org/10.1007/s10531-004-0695-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-4676-3_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049565489", 
              "https://doi.org/10.1007/978-94-007-4676-3_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-016-0075-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050595119", 
              "https://doi.org/10.1007/s41324-016-0075-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-016-0075-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050595119", 
              "https://doi.org/10.1007/s41324-016-0075-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)he.1943-5584.0000006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057633611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-017-0117-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085983819", 
              "https://doi.org/10.1007/s41324-017-0117-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-017-0117-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085983819", 
              "https://doi.org/10.1007/s41324-017-0117-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12944/cwe.12.2.19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091445014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-017-0139-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092115289", 
              "https://doi.org/10.1007/s41324-017-0139-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-6605-4_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100790091", 
              "https://doi.org/10.1007/978-981-10-6605-4_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10457-018-0233-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103853088", 
              "https://doi.org/10.1007/s10457-018-0233-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-018-0194-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103974266", 
              "https://doi.org/10.1007/s41324-018-0194-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-018-0197-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104645944", 
              "https://doi.org/10.1007/s41324-018-0197-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-019-00245-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111500928", 
              "https://doi.org/10.1007/s41324-019-00245-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-018-00231-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112142051", 
              "https://doi.org/10.1007/s41324-018-00231-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41324-018-00231-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112142051", 
              "https://doi.org/10.1007/s41324-018-00231-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-20", 
        "datePublishedReg": "2019-03-20", 
        "description": "This study has utilized the remote sensing and GIS datasets such as tree cover, harmonized land cover, agriculture mask and ancillary source of India for better comprehension of tree cover percent distribution in geographical territory/vegetation classes/agro-ecological zones/agriculture landscapes. The study revealed in the year 2000 the forest area in India was 15.4% of the total geographical area. Furthermore, the total agriculture area in India (including single/double/continuous/rainfed area) for the year 2000 was found 63% of the total geographical area and approximately 10% of the agriculture land retains at least 10% of tree cover which is roughly one-fourth of the total global average. The mean tree cover distribution in various vegetation types was found highest (76.4%) in the category of \u201cTropical and sub-tropical mountain forests, broadleaved, evergreen > 1000 m\u201d. The vegetation category \u201cTropical mixed deciduous and dry deciduous forests\u201d occupied high area percent (14.4%) and showed significantly low mean tree cover percent (15.1%). The tree cover percent analysis in various agro-ecological zones of India showed high mean tree cover in those zones where the rainfall is significantly high and soil fertility is adequate such as the categories \u201cNorth Eastern Hills\u201d (62.5%), \u201cEastern Himalayas\u201d (60.0%) and \u201cWestern Ghats and Coastal Plain\u201d (30.70%).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s41324-019-00261-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1153043", 
            "issn": [
              "2366-3286", 
              "2366-3294"
            ], 
            "name": "Spatial Information Research", 
            "type": "Periodical"
          }
        ], 
        "name": "Tree cover percent investigation with respect to geographical area, vegetation types, agro ecological regions and in agriculture landscape of India: a geospatial approach", 
        "pagination": "1-9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1b5b4553f08942a998a77b03abb68e1a296bd3b637fb38eee64ef3a86300a6e2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41324-019-00261-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112896102"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41324-019-00261-5", 
          "https://app.dimensions.ai/details/publication/pub.1112896102"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70040_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs41324-019-00261-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00261-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00261-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00261-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00261-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      21 PREDICATES      48 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41324-019-00261-5 schema:about anzsrc-for:05
    2 anzsrc-for:0502
    3 schema:author Nde640796cfe648938c122ebe6be5d6c2
    4 schema:citation sg:pub.10.1007/978-94-007-4676-3_19
    5 sg:pub.10.1007/978-981-10-6605-4_1
    6 sg:pub.10.1007/s10457-016-9926-y
    7 sg:pub.10.1007/s10457-018-0233-7
    8 sg:pub.10.1007/s10531-004-0695-y
    9 sg:pub.10.1007/s10661-015-4990-8
    10 sg:pub.10.1007/s41324-016-0062-6
    11 sg:pub.10.1007/s41324-016-0075-1
    12 sg:pub.10.1007/s41324-017-0117-3
    13 sg:pub.10.1007/s41324-017-0139-x
    14 sg:pub.10.1007/s41324-018-00231-3
    15 sg:pub.10.1007/s41324-018-0194-y
    16 sg:pub.10.1007/s41324-018-0197-8
    17 sg:pub.10.1007/s41324-019-00245-5
    18 sg:pub.10.1038/35002501
    19 sg:pub.10.1038/srep29987
    20 https://doi.org/10.1016/j.jag.2005.08.004
    21 https://doi.org/10.1016/j.rse.2004.12.010
    22 https://doi.org/10.1046/j.1365-2486.2000.00296.x
    23 https://doi.org/10.1061/(asce)he.1943-5584.0000006
    24 https://doi.org/10.1080/01431161.2016.1142684
    25 https://doi.org/10.1126/science.1111772
    26 https://doi.org/10.1126/science.1244693
    27 https://doi.org/10.12944/cwe.12.2.19
    28 schema:datePublished 2019-03-20
    29 schema:datePublishedReg 2019-03-20
    30 schema:description This study has utilized the remote sensing and GIS datasets such as tree cover, harmonized land cover, agriculture mask and ancillary source of India for better comprehension of tree cover percent distribution in geographical territory/vegetation classes/agro-ecological zones/agriculture landscapes. The study revealed in the year 2000 the forest area in India was 15.4% of the total geographical area. Furthermore, the total agriculture area in India (including single/double/continuous/rainfed area) for the year 2000 was found 63% of the total geographical area and approximately 10% of the agriculture land retains at least 10% of tree cover which is roughly one-fourth of the total global average. The mean tree cover distribution in various vegetation types was found highest (76.4%) in the category of “Tropical and sub-tropical mountain forests, broadleaved, evergreen > 1000 m”. The vegetation category “Tropical mixed deciduous and dry deciduous forests” occupied high area percent (14.4%) and showed significantly low mean tree cover percent (15.1%). The tree cover percent analysis in various agro-ecological zones of India showed high mean tree cover in those zones where the rainfall is significantly high and soil fertility is adequate such as the categories “North Eastern Hills” (62.5%), “Eastern Himalayas” (60.0%) and “Western Ghats and Coastal Plain” (30.70%).
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf sg:journal.1153043
    35 schema:name Tree cover percent investigation with respect to geographical area, vegetation types, agro ecological regions and in agriculture landscape of India: a geospatial approach
    36 schema:pagination 1-9
    37 schema:productId N20385c54a7b6444fb276668a1dd2e17d
    38 Ne4c883de7d9044638e71e0c7998a9796
    39 Nea616ed95f11412c9c3a776d677acd4b
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112896102
    41 https://doi.org/10.1007/s41324-019-00261-5
    42 schema:sdDatePublished 2019-04-11T12:38
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N9944b2832cea48df8634655a0de94ae7
    45 schema:url https://link.springer.com/10.1007%2Fs41324-019-00261-5
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N20385c54a7b6444fb276668a1dd2e17d schema:name readcube_id
    50 schema:value 1b5b4553f08942a998a77b03abb68e1a296bd3b637fb38eee64ef3a86300a6e2
    51 rdf:type schema:PropertyValue
    52 N6274b637d6b3413eb17578479066af71 schema:name Vindhyan Ecology and Natural History Foundation, Mirzapur, Uttar Pradesh, India
    53 rdf:type schema:Organization
    54 N80969a6c69864322bac0f023e4f18529 rdf:first Nb7c27721d4ee4092af450b3d5f208571
    55 rdf:rest rdf:nil
    56 N84d5c7cbee664f6ea798f7abbbb43bf6 schema:affiliation N979177dc4d944ff4948f43ef5b8dd5d0
    57 schema:familyName Goparaju
    58 schema:givenName Laxmi
    59 rdf:type schema:Person
    60 N979177dc4d944ff4948f43ef5b8dd5d0 schema:name Vindhyan Ecology and Natural History Foundation, Mirzapur, Uttar Pradesh, India
    61 rdf:type schema:Organization
    62 N9944b2832cea48df8634655a0de94ae7 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Nb7c27721d4ee4092af450b3d5f208571 schema:affiliation N6274b637d6b3413eb17578479066af71
    65 schema:familyName Ahmad
    66 schema:givenName Firoz
    67 rdf:type schema:Person
    68 Nde640796cfe648938c122ebe6be5d6c2 rdf:first N84d5c7cbee664f6ea798f7abbbb43bf6
    69 rdf:rest N80969a6c69864322bac0f023e4f18529
    70 Ne4c883de7d9044638e71e0c7998a9796 schema:name doi
    71 schema:value 10.1007/s41324-019-00261-5
    72 rdf:type schema:PropertyValue
    73 Nea616ed95f11412c9c3a776d677acd4b schema:name dimensions_id
    74 schema:value pub.1112896102
    75 rdf:type schema:PropertyValue
    76 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Environmental Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Environmental Science and Management
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1153043 schema:issn 2366-3286
    83 2366-3294
    84 schema:name Spatial Information Research
    85 rdf:type schema:Periodical
    86 sg:pub.10.1007/978-94-007-4676-3_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049565489
    87 https://doi.org/10.1007/978-94-007-4676-3_19
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-981-10-6605-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100790091
    90 https://doi.org/10.1007/978-981-10-6605-4_1
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/s10457-016-9926-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035978678
    93 https://doi.org/10.1007/s10457-016-9926-y
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s10457-018-0233-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103853088
    96 https://doi.org/10.1007/s10457-018-0233-7
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s10531-004-0695-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048141159
    99 https://doi.org/10.1007/s10531-004-0695-y
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s10661-015-4990-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014322997
    102 https://doi.org/10.1007/s10661-015-4990-8
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s41324-016-0062-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025992374
    105 https://doi.org/10.1007/s41324-016-0062-6
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s41324-016-0075-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050595119
    108 https://doi.org/10.1007/s41324-016-0075-1
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s41324-017-0117-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085983819
    111 https://doi.org/10.1007/s41324-017-0117-3
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s41324-017-0139-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092115289
    114 https://doi.org/10.1007/s41324-017-0139-x
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s41324-018-00231-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112142051
    117 https://doi.org/10.1007/s41324-018-00231-3
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s41324-018-0194-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1103974266
    120 https://doi.org/10.1007/s41324-018-0194-y
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s41324-018-0197-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104645944
    123 https://doi.org/10.1007/s41324-018-0197-8
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s41324-019-00245-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111500928
    126 https://doi.org/10.1007/s41324-019-00245-5
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1038/35002501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021819037
    129 https://doi.org/10.1038/35002501
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1038/srep29987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020829888
    132 https://doi.org/10.1038/srep29987
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.jag.2005.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007835963
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.rse.2004.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005035388
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1046/j.1365-2486.2000.00296.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039600662
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1061/(asce)he.1943-5584.0000006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057633611
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1080/01431161.2016.1142684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012043552
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1126/science.1111772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385493
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1126/science.1244693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043560141
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.12944/cwe.12.2.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091445014
    149 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...