Change detection in urban landscapes: a tensor factorization approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-16

AUTHORS

S. Saritha, G. Santhosh Kumar

ABSTRACT

Analysis of urban landscape has been an interesting research challenge for decades. The advent of machine learning and data mining techniques have geared the problem from simple analysis of data to knowledge discovery from data. This work attempts to mine urban landscapes to find the change pattern which has happened over the region for a period of interest. The work proposes a spatiotemporal-metric miner, which uses the spatial, temporal and landscape metric data to discover the change that has occurred in a region. The model works on a hierarchical basis, wherein, the regions of interest are chosen in a landscape and are aggregated to find the change that has happened over the entire region. The entire model is built by taking advantage of the tensorized representation of data, and thus resulting in the effective mining of tensors. The growth of a landscape is evaluated regarding two parameters, namely, Inter-class Growth Index and Intra-class Growth Index. Experiments are performed on the landscape regions of Indian cities, and a ranking of cities is presented based on the growth indices, which are validated against standards. In the experiments, Jaipur city showed the highest Inter-class Growth Index value of 2.68 and Surat city had an Intra-class Growth Index of 0.78. More... »

PAGES

1-14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41324-019-00255-3

DOI

http://dx.doi.org/10.1007/s41324-019-00255-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112830046


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Human Geography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mahatma Gandhi University", 
          "id": "https://www.grid.ac/institutes/grid.411552.6", 
          "name": [
            "Department of Computer Science, Cochin University of Science and Technology, Kochi, Kerala, India", 
            "Department of Information Technology, Rajagiri School of Engineering and Technology, Kochi, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saritha", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cochin University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411771.5", 
          "name": [
            "Department of Computer Science, Cochin University of Science and Technology, Kochi, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santhosh Kumar", 
        "givenName": "G.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.rse.2008.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015825804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015924364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2010.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020064081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2006.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021087731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ida-160806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022622130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2012.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025222083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.landurbplan.2010.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025547230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.1840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026980705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.1840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026980705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2010.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028499964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.landurbplan.2013.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2004.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203881613.ch10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030002174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.75.11.1319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030090865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007eo020003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030719193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031959287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2623330.2623656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034782349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2008.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037354693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0086028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037651708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8030176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040231639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-008-0274-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041348394", 
          "https://doi.org/10.1007/s10661-008-0274-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1765(84)90126-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044166647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658816.2013.831097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046242082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8020151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047719272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2012.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049221964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaridenv.2015.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049813549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2015.2433257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/07070111x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479898346995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0263774x15614174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063785281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0263774x15614174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063785281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12942/lrlr-2009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064758108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14257/ijmue.2016.11.12.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067237531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14257/ijmue.2016.11.12.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067237531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scs.2017.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084108126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ida-170873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084650520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3097983.3098070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091105002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jifs-162245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091899984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.2008.4779809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093556269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.2015.7326158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093791769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tenconspring.2017.8070049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095779154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b19880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095906914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2018.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107817166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2018.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107817166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13177-018-0167-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107989501", 
          "https://doi.org/10.1007/s13177-018-0167-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2018/3907804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109888850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110257512"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-16", 
    "datePublishedReg": "2019-03-16", 
    "description": "Analysis of urban landscape has been an interesting research challenge for decades. The advent of machine learning and data mining techniques have geared the problem from simple analysis of data to knowledge discovery from data. This work attempts to mine urban landscapes to find the change pattern which has happened over the region for a period of interest. The work proposes a spatiotemporal-metric miner, which uses the spatial, temporal and landscape metric data to discover the change that has occurred in a region. The model works on a hierarchical basis, wherein, the regions of interest are chosen in a landscape and are aggregated to find the change that has happened over the entire region. The entire model is built by taking advantage of the tensorized representation of data, and thus resulting in the effective mining of tensors. The growth of a landscape is evaluated regarding two parameters, namely, Inter-class Growth Index and Intra-class Growth Index. Experiments are performed on the landscape regions of Indian cities, and a ranking of cities is presented based on the growth indices, which are validated against standards. In the experiments, Jaipur city showed the highest Inter-class Growth Index value of 2.68 and Surat city had an Intra-class Growth Index of 0.78.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41324-019-00255-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1153043", 
        "issn": [
          "2366-3286", 
          "2366-3294"
        ], 
        "name": "Spatial Information Research", 
        "type": "Periodical"
      }
    ], 
    "name": "Change detection in urban landscapes: a tensor factorization approach", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10e9b7e730af2adce960ce23a86ab26be7dcd748b9123c490936b94257d096e2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41324-019-00255-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112830046"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41324-019-00255-3", 
      "https://app.dimensions.ai/details/publication/pub.1112830046"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118309_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41324-019-00255-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00255-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00255-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00255-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41324-019-00255-3'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      67 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41324-019-00255-3 schema:about anzsrc-for:16
2 anzsrc-for:1604
3 schema:author Nd0494331d2e14267a086c6fb7a14c424
4 schema:citation sg:pub.10.1007/s10661-008-0274-x
5 sg:pub.10.1007/s13177-018-0167-5
6 https://doi.org/10.1002/cem.801
7 https://doi.org/10.1002/esp.1840
8 https://doi.org/10.1016/0165-1765(84)90126-5
9 https://doi.org/10.1016/j.ecolind.2010.08.007
10 https://doi.org/10.1016/j.ecolind.2010.12.019
11 https://doi.org/10.1016/j.isprsjprs.2008.04.002
12 https://doi.org/10.1016/j.jaridenv.2015.08.009
13 https://doi.org/10.1016/j.landurbplan.2010.09.001
14 https://doi.org/10.1016/j.landurbplan.2013.10.002
15 https://doi.org/10.1016/j.patcog.2004.07.010
16 https://doi.org/10.1016/j.patcog.2018.10.021
17 https://doi.org/10.1016/j.rse.2006.01.013
18 https://doi.org/10.1016/j.rse.2008.03.013
19 https://doi.org/10.1016/j.rse.2012.10.031
20 https://doi.org/10.1016/j.rse.2015.01.006
21 https://doi.org/10.1016/j.scs.2017.02.018
22 https://doi.org/10.1016/j.trc.2012.12.007
23 https://doi.org/10.1016/j.trc.2018.11.003
24 https://doi.org/10.1029/2007eo020003
25 https://doi.org/10.1080/13658816.2013.831097
26 https://doi.org/10.1109/igarss.2008.4779809
27 https://doi.org/10.1109/igarss.2015.7326158
28 https://doi.org/10.1109/jstars.2015.2433257
29 https://doi.org/10.1109/tenconspring.2017.8070049
30 https://doi.org/10.1137/07070111x
31 https://doi.org/10.1137/s0895479898346995
32 https://doi.org/10.1145/2623330.2623656
33 https://doi.org/10.1145/3097983.3098070
34 https://doi.org/10.1155/2018/3907804
35 https://doi.org/10.1177/0263774x15614174
36 https://doi.org/10.1201/9780203881613.ch10
37 https://doi.org/10.1201/b19880
38 https://doi.org/10.12942/lrlr-2009-1
39 https://doi.org/10.1371/journal.pone.0086028
40 https://doi.org/10.14257/ijmue.2016.11.12.14
41 https://doi.org/10.14358/pers.75.11.1319
42 https://doi.org/10.3233/ida-160806
43 https://doi.org/10.3233/ida-170873
44 https://doi.org/10.3233/jifs-162245
45 https://doi.org/10.3390/rs8020151
46 https://doi.org/10.3390/rs8030176
47 schema:datePublished 2019-03-16
48 schema:datePublishedReg 2019-03-16
49 schema:description Analysis of urban landscape has been an interesting research challenge for decades. The advent of machine learning and data mining techniques have geared the problem from simple analysis of data to knowledge discovery from data. This work attempts to mine urban landscapes to find the change pattern which has happened over the region for a period of interest. The work proposes a spatiotemporal-metric miner, which uses the spatial, temporal and landscape metric data to discover the change that has occurred in a region. The model works on a hierarchical basis, wherein, the regions of interest are chosen in a landscape and are aggregated to find the change that has happened over the entire region. The entire model is built by taking advantage of the tensorized representation of data, and thus resulting in the effective mining of tensors. The growth of a landscape is evaluated regarding two parameters, namely, Inter-class Growth Index and Intra-class Growth Index. Experiments are performed on the landscape regions of Indian cities, and a ranking of cities is presented based on the growth indices, which are validated against standards. In the experiments, Jaipur city showed the highest Inter-class Growth Index value of 2.68 and Surat city had an Intra-class Growth Index of 0.78.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf sg:journal.1153043
54 schema:name Change detection in urban landscapes: a tensor factorization approach
55 schema:pagination 1-14
56 schema:productId N6a46223e892240acb6ca8de0d9eb5402
57 Na1ce146ab4b442bcb7a51879f1e43a5f
58 Nc91e304778c3486099de6b7311f6874f
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112830046
60 https://doi.org/10.1007/s41324-019-00255-3
61 schema:sdDatePublished 2019-04-11T12:04
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N8b9e63393df44c7bb468266eda7ed3c7
64 schema:url https://link.springer.com/10.1007%2Fs41324-019-00255-3
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N1c78709729674286ae30c04898555f58 rdf:first Ne23d6a0519cc4c2fa4d846ba2f2000d1
69 rdf:rest rdf:nil
70 N6a46223e892240acb6ca8de0d9eb5402 schema:name dimensions_id
71 schema:value pub.1112830046
72 rdf:type schema:PropertyValue
73 N8b9e63393df44c7bb468266eda7ed3c7 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Na1ce146ab4b442bcb7a51879f1e43a5f schema:name doi
76 schema:value 10.1007/s41324-019-00255-3
77 rdf:type schema:PropertyValue
78 Nc91e304778c3486099de6b7311f6874f schema:name readcube_id
79 schema:value 10e9b7e730af2adce960ce23a86ab26be7dcd748b9123c490936b94257d096e2
80 rdf:type schema:PropertyValue
81 Nd0494331d2e14267a086c6fb7a14c424 rdf:first Nd10e348b9acf4c54afd4076b286641d5
82 rdf:rest N1c78709729674286ae30c04898555f58
83 Nd10e348b9acf4c54afd4076b286641d5 schema:affiliation https://www.grid.ac/institutes/grid.411552.6
84 schema:familyName Saritha
85 schema:givenName S.
86 rdf:type schema:Person
87 Ne23d6a0519cc4c2fa4d846ba2f2000d1 schema:affiliation https://www.grid.ac/institutes/grid.411771.5
88 schema:familyName Santhosh Kumar
89 schema:givenName G.
90 rdf:type schema:Person
91 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
92 schema:name Studies in Human Society
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1604 schema:inDefinedTermSet anzsrc-for:
95 schema:name Human Geography
96 rdf:type schema:DefinedTerm
97 sg:journal.1153043 schema:issn 2366-3286
98 2366-3294
99 schema:name Spatial Information Research
100 rdf:type schema:Periodical
101 sg:pub.10.1007/s10661-008-0274-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041348394
102 https://doi.org/10.1007/s10661-008-0274-x
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s13177-018-0167-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107989501
105 https://doi.org/10.1007/s13177-018-0167-5
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/cem.801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015924364
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/esp.1840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026980705
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0165-1765(84)90126-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044166647
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.ecolind.2010.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028499964
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ecolind.2010.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020064081
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.isprsjprs.2008.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037354693
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jaridenv.2015.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049813549
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.landurbplan.2010.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025547230
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.landurbplan.2013.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942780
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.patcog.2004.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029660842
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.patcog.2018.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107817166
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.rse.2006.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021087731
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.rse.2008.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015825804
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.rse.2012.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025222083
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.rse.2015.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031959287
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.scs.2017.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084108126
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.trc.2012.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049221964
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.trc.2018.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110257512
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1029/2007eo020003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030719193
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/13658816.2013.831097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046242082
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/igarss.2008.4779809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093556269
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/igarss.2015.7326158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093791769
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/jstars.2015.2433257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333795
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tenconspring.2017.8070049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095779154
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1137/07070111x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851534
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1137/s0895479898346995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882452
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/2623330.2623656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034782349
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1145/3097983.3098070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091105002
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1155/2018/3907804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109888850
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1177/0263774x15614174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063785281
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1201/9780203881613.ch10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030002174
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1201/b19880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095906914
170 rdf:type schema:CreativeWork
171 https://doi.org/10.12942/lrlr-2009-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064758108
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pone.0086028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037651708
174 rdf:type schema:CreativeWork
175 https://doi.org/10.14257/ijmue.2016.11.12.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067237531
176 rdf:type schema:CreativeWork
177 https://doi.org/10.14358/pers.75.11.1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030090865
178 rdf:type schema:CreativeWork
179 https://doi.org/10.3233/ida-160806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022622130
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3233/ida-170873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084650520
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3233/jifs-162245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091899984
184 rdf:type schema:CreativeWork
185 https://doi.org/10.3390/rs8020151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047719272
186 rdf:type schema:CreativeWork
187 https://doi.org/10.3390/rs8030176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040231639
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.411552.6 schema:alternateName Mahatma Gandhi University
190 schema:name Department of Computer Science, Cochin University of Science and Technology, Kochi, Kerala, India
191 Department of Information Technology, Rajagiri School of Engineering and Technology, Kochi, Kerala, India
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.411771.5 schema:alternateName Cochin University of Science and Technology
194 schema:name Department of Computer Science, Cochin University of Science and Technology, Kochi, Kerala, India
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...