What makes the difference between memory and face of a landscape? A machine learning approach applied to the federal state ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ralf Wieland, Monika Wulf, Kristin Meier

ABSTRACT

The paper introduces two types of models: the “memory of a landscape” and the “face of a landscape”. The memory of a landscape refers to the development of a landscape as a result of many small and some major events. It can be described by a multitude of features that are difficult to change by humans, such as the initial geological substrate and the availability of nutrients linked to it. The implementation of the “memory model” leads to a scientific modelling approach that models the influence of the basic factors on forest distribution. The face of a landscape on the other hand implements a Big Data approach. The face can be changed more easily, e.g. by clearing forest areas and converting them into arable land. Both types of models are used to conclude from today’s perspective on the development of historical forests around 1880. A machine learning algorithm is used to implement both model types and evaluate the importance of features. Both models show differences in accuracy and simulation, which are discussed in detail. The inherent evaluation of the importance of the model inputs can be used to critically review some doctrines. The combination of machine learning with the knowledge of experts who help to select and prepare the data can be used in the future to depict the memory of a landscape more comprehensively in a model than is possible with previous approaches. More... »

PAGES

237-246

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41324-018-0228-5

DOI

http://dx.doi.org/10.1007/s41324-018-0228-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110376031


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leibniz Centre for Agricultural Landscape Research", 
          "id": "https://www.grid.ac/institutes/grid.433014.1", 
          "name": [
            "Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Muencheberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wieland", 
        "givenName": "Ralf", 
        "id": "sg:person.015751264552.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751264552.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Centre for Agricultural Landscape Research", 
          "id": "https://www.grid.ac/institutes/grid.433014.1", 
          "name": [
            "Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Muencheberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wulf", 
        "givenName": "Monika", 
        "id": "sg:person.011471050367.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471050367.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Centre for Agricultural Landscape Research", 
          "id": "https://www.grid.ac/institutes/grid.433014.1", 
          "name": [
            "Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Muencheberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meier", 
        "givenName": "Kristin", 
        "id": "sg:person.016653020237.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016653020237.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-4762.2009.00900.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003083727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-4762.2009.00900.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003083727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.quaint.2015.11.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004735710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11284-007-0354-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007925264", 
          "https://doi.org/10.1007/s11284-007-0354-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1013463736", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-8274-2397-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013463736", 
          "https://doi.org/10.1007/978-3-8274-2397-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-8274-2397-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013463736", 
          "https://doi.org/10.1007/978-3-8274-2397-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoinf.2010.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020661421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10021-001-0077-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020969233", 
          "https://doi.org/10.1007/s10021-001-0077-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2939672.2939785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021899069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-2046(94)01034-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023668138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1756-8765.2008.01006.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027322050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s1519-69842007000300004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031867819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1111772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032385493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012454411458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035435753", 
          "https://doi.org/10.1023/a:1012454411458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ele.12399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036985323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10113-016-0930-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038339702", 
          "https://doi.org/10.1007/s10113-016-0930-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022061622602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040749963", 
          "https://doi.org/10.1023/a:1022061622602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01048603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041068143", 
          "https://doi.org/10.1007/bf01048603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1641/0006-3568(2003)053[0077:tiolul]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041885131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018054314350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047284588", 
          "https://doi.org/10.1023/a:1018054314350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2260864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069853990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2261008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069854123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2017.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084525437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2017.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099622204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2018.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106279350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3285/eg.19.1.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107573448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108496146", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-43042-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108496146", 
          "https://doi.org/10.1007/978-3-319-43042-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-43042-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108496146", 
          "https://doi.org/10.1007/978-3-319-43042-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The paper introduces two types of models: the \u201cmemory of a landscape\u201d and the \u201cface of a landscape\u201d. The memory of a landscape refers to the development of a landscape as a result of many small and some major events. It can be described by a multitude of features that are difficult to change by humans, such as the initial geological substrate and the availability of nutrients linked to it. The implementation of the \u201cmemory model\u201d leads to a scientific modelling approach that models the influence of the basic factors on forest distribution. The face of a landscape on the other hand implements a Big Data approach. The face can be changed more easily, e.g. by clearing forest areas and converting them into arable land. Both types of models are used to conclude from today\u2019s perspective on the development of historical forests around 1880. A machine learning algorithm is used to implement both model types and evaluate the importance of features. Both models show differences in accuracy and simulation, which are discussed in detail. The inherent evaluation of the importance of the model inputs can be used to critically review some doctrines. The combination of machine learning with the knowledge of experts who help to select and prepare the data can be used in the future to depict the memory of a landscape more comprehensively in a model than is possible with previous approaches.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41324-018-0228-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1153043", 
        "issn": [
          "2366-3286", 
          "2366-3294"
        ], 
        "name": "Spatial Information Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "What makes the difference between memory and face of a landscape? A machine learning approach applied to the federal state Brandenburg, Germany", 
    "pagination": "237-246", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "98c222079bbfd09959e7c187c152f8f55c7b52168cf31426b6a55537261c228a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41324-018-0228-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110376031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41324-018-0228-5", 
      "https://app.dimensions.ai/details/publication/pub.1110376031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46769_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41324-018-0228-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41324-018-0228-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41324-018-0228-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41324-018-0228-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41324-018-0228-5'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41324-018-0228-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb76bc84f8ad349b0a1116e9d97c29c74
4 schema:citation sg:pub.10.1007/978-3-319-43042-3
5 sg:pub.10.1007/978-3-8274-2397-9
6 sg:pub.10.1007/bf00058655
7 sg:pub.10.1007/bf01048603
8 sg:pub.10.1007/s10021-001-0077-1
9 sg:pub.10.1007/s10113-016-0930-6
10 sg:pub.10.1007/s11284-007-0354-3
11 sg:pub.10.1023/a:1010933404324
12 sg:pub.10.1023/a:1012454411458
13 sg:pub.10.1023/a:1018054314350
14 sg:pub.10.1023/a:1022061622602
15 https://app.dimensions.ai/details/publication/pub.1013463736
16 https://app.dimensions.ai/details/publication/pub.1108496146
17 https://doi.org/10.1016/0169-2046(94)01034-6
18 https://doi.org/10.1016/j.ecoinf.2010.09.002
19 https://doi.org/10.1016/j.ecolmodel.2017.02.029
20 https://doi.org/10.1016/j.envsoft.2017.11.023
21 https://doi.org/10.1016/j.isprsjprs.2018.08.005
22 https://doi.org/10.1016/j.quaint.2015.11.131
23 https://doi.org/10.1111/ele.12399
24 https://doi.org/10.1111/j.1475-4762.2009.00900.x
25 https://doi.org/10.1111/j.1756-8765.2008.01006.x
26 https://doi.org/10.1126/science.1111772
27 https://doi.org/10.1145/2939672.2939785
28 https://doi.org/10.1590/s1519-69842007000300004
29 https://doi.org/10.1641/0006-3568(2003)053[0077:tiolul]2.0.co;2
30 https://doi.org/10.2307/2260864
31 https://doi.org/10.2307/2261008
32 https://doi.org/10.3285/eg.19.1.13
33 schema:datePublished 2019-04
34 schema:datePublishedReg 2019-04-01
35 schema:description The paper introduces two types of models: the “memory of a landscape” and the “face of a landscape”. The memory of a landscape refers to the development of a landscape as a result of many small and some major events. It can be described by a multitude of features that are difficult to change by humans, such as the initial geological substrate and the availability of nutrients linked to it. The implementation of the “memory model” leads to a scientific modelling approach that models the influence of the basic factors on forest distribution. The face of a landscape on the other hand implements a Big Data approach. The face can be changed more easily, e.g. by clearing forest areas and converting them into arable land. Both types of models are used to conclude from today’s perspective on the development of historical forests around 1880. A machine learning algorithm is used to implement both model types and evaluate the importance of features. Both models show differences in accuracy and simulation, which are discussed in detail. The inherent evaluation of the importance of the model inputs can be used to critically review some doctrines. The combination of machine learning with the knowledge of experts who help to select and prepare the data can be used in the future to depict the memory of a landscape more comprehensively in a model than is possible with previous approaches.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N087ef42ef4224fb08e29e8e9422de4b0
40 N2359555106fb4de2acd6a669e70711a4
41 sg:journal.1153043
42 schema:name What makes the difference between memory and face of a landscape? A machine learning approach applied to the federal state Brandenburg, Germany
43 schema:pagination 237-246
44 schema:productId N94e1b1b8400347ab8891b33ed142e9fd
45 Nd543079fd9484e6d99579581e4b5a995
46 Nf4bec7c001f640ab85b839a699653197
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110376031
48 https://doi.org/10.1007/s41324-018-0228-5
49 schema:sdDatePublished 2019-04-11T13:34
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N65a06f2edf4e4b44882b1b2cfa78eefe
52 schema:url https://link.springer.com/10.1007%2Fs41324-018-0228-5
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N087ef42ef4224fb08e29e8e9422de4b0 schema:volumeNumber 27
57 rdf:type schema:PublicationVolume
58 N2359555106fb4de2acd6a669e70711a4 schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 N65a06f2edf4e4b44882b1b2cfa78eefe schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N670f8f62be9247a39e7be2b5afad98b4 rdf:first sg:person.011471050367.32
63 rdf:rest Naf66d76485b54a4a8e246f6f21f486bf
64 N94e1b1b8400347ab8891b33ed142e9fd schema:name dimensions_id
65 schema:value pub.1110376031
66 rdf:type schema:PropertyValue
67 Naf66d76485b54a4a8e246f6f21f486bf rdf:first sg:person.016653020237.55
68 rdf:rest rdf:nil
69 Nb76bc84f8ad349b0a1116e9d97c29c74 rdf:first sg:person.015751264552.58
70 rdf:rest N670f8f62be9247a39e7be2b5afad98b4
71 Nd543079fd9484e6d99579581e4b5a995 schema:name doi
72 schema:value 10.1007/s41324-018-0228-5
73 rdf:type schema:PropertyValue
74 Nf4bec7c001f640ab85b839a699653197 schema:name readcube_id
75 schema:value 98c222079bbfd09959e7c187c152f8f55c7b52168cf31426b6a55537261c228a
76 rdf:type schema:PropertyValue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:journal.1153043 schema:issn 2366-3286
84 2366-3294
85 schema:name Spatial Information Research
86 rdf:type schema:Periodical
87 sg:person.011471050367.32 schema:affiliation https://www.grid.ac/institutes/grid.433014.1
88 schema:familyName Wulf
89 schema:givenName Monika
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471050367.32
91 rdf:type schema:Person
92 sg:person.015751264552.58 schema:affiliation https://www.grid.ac/institutes/grid.433014.1
93 schema:familyName Wieland
94 schema:givenName Ralf
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751264552.58
96 rdf:type schema:Person
97 sg:person.016653020237.55 schema:affiliation https://www.grid.ac/institutes/grid.433014.1
98 schema:familyName Meier
99 schema:givenName Kristin
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016653020237.55
101 rdf:type schema:Person
102 sg:pub.10.1007/978-3-319-43042-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108496146
103 https://doi.org/10.1007/978-3-319-43042-3
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-8274-2397-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013463736
106 https://doi.org/10.1007/978-3-8274-2397-9
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
109 https://doi.org/10.1007/bf00058655
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01048603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041068143
112 https://doi.org/10.1007/bf01048603
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10021-001-0077-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020969233
115 https://doi.org/10.1007/s10021-001-0077-1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10113-016-0930-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038339702
118 https://doi.org/10.1007/s10113-016-0930-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11284-007-0354-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007925264
121 https://doi.org/10.1007/s11284-007-0354-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
124 https://doi.org/10.1023/a:1010933404324
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1012454411458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035435753
127 https://doi.org/10.1023/a:1012454411458
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1018054314350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047284588
130 https://doi.org/10.1023/a:1018054314350
131 rdf:type schema:CreativeWork
132 sg:pub.10.1023/a:1022061622602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040749963
133 https://doi.org/10.1023/a:1022061622602
134 rdf:type schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1013463736 schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1108496146 schema:CreativeWork
137 https://doi.org/10.1016/0169-2046(94)01034-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023668138
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ecoinf.2010.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020661421
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ecolmodel.2017.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084525437
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.envsoft.2017.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099622204
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.isprsjprs.2018.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106279350
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.quaint.2015.11.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004735710
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/ele.12399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036985323
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1111/j.1475-4762.2009.00900.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003083727
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1111/j.1756-8765.2008.01006.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027322050
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1126/science.1111772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385493
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/2939672.2939785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021899069
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1590/s1519-69842007000300004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031867819
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1641/0006-3568(2003)053[0077:tiolul]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041885131
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2307/2260864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069853990
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2307/2261008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069854123
166 rdf:type schema:CreativeWork
167 https://doi.org/10.3285/eg.19.1.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107573448
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.433014.1 schema:alternateName Leibniz Centre for Agricultural Landscape Research
170 schema:name Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Muencheberg, Germany
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...