Delineation of hydrocarbon potential zones in Masila oil field, Yemen View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Mohammed Sultan Alshayef, Akram Javed, Arafat Mohammed Bin Mohammed

ABSTRACT

Hydrocarbon is a powerful contributor to development. The present study makes an attempt to use remote sensing data coupled with geophysical and geological data that has been integrated into Arc GIS to delineate favorable zones for hydrocarbon potential in the Masila oil field. Lineaments have been extracted using satellite data and geological data by their surface spectral signatures, whereas the subsurface lineaments have been inferred using geophysical data. Digital image processing of satellite image using ERDAS IMAGINE-14 have been carried out, sequentially using various techniques (Sobal, Laplacian filters and band composite), lineament digitized as layers, layers were converted to raster (grid) format, classified, analyzed, integrated and visualized using Arc GIS. The resulting lineaments obtained from each data, suggests that most of the lineaments are trended in NW–SE which coincides and are in conformity with the existing trend of the study area. The output potential map was classified into five zones of hydrocarbon potentiality, namely very high, high, moderate, low and very low potential zones. The hydrocarbon evaluation results of the present study reveal that 6.9% of the total area falls under very high potential, 14.2% highly potential, 21.3% moderately potential, 25.7% low potential and 31.9% falls under very low potential zones. The zones were verified with oil fields and existing wells in the area which shows a positive correlation. Such studies are significant for hydrocarbon potential resource planning and management. Further, the methodology used for this study can be, replicated in another similar geological setup elsewhere for mapping hydrocarbon potential zones. More... »

PAGES

121-135

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41324-018-0220-0

DOI

http://dx.doi.org/10.1007/s41324-018-0220-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109781045


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aligarh Muslim University", 
          "id": "https://www.grid.ac/institutes/grid.411340.3", 
          "name": [
            "Department of Geology, Aligarh Muslim University, Aligarh, UP, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alshayef", 
        "givenName": "Mohammed Sultan", 
        "id": "sg:person.015315031604.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015315031604.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aligarh Muslim University", 
          "id": "https://www.grid.ac/institutes/grid.411340.3", 
          "name": [
            "Department of Geology, Aligarh Muslim University, Aligarh, UP, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Javed", 
        "givenName": "Akram", 
        "id": "sg:person.014117462413.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014117462413.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Aden", 
          "id": "https://www.grid.ac/institutes/grid.411125.2", 
          "name": [
            "Department of Oil and Gas, Aden University, Shabwah, Yemen"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammed", 
        "givenName": "Arafat Mohammed Bin", 
        "id": "sg:person.011462772624.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462772624.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1367-9120(02)00025-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000198870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-013-1003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002052765", 
          "https://doi.org/10.1007/s12517-013-1003-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311698214244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003982305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-010-0189-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011865044", 
          "https://doi.org/10.1007/s12517-010-0189-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-010-0189-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011865044", 
          "https://doi.org/10.1007/s12517-010-0189-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311699212858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016714229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/201757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018172401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2011.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021534700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-1951(99)00011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025698975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160410001705088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029137742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03030884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030049131", 
          "https://doi.org/10.1007/bf03030884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsl.sp.1990.050.01.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035771799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1747-5457.1990.tb00840.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037739612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311698215621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038101728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02990737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051108975", 
          "https://doi.org/10.1007/bf02990737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02990737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051108975", 
          "https://doi.org/10.1007/bf02990737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0143116031000102557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058294311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5539/jgg.v2n1p119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072962181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41324-017-0155-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093090178", 
          "https://doi.org/10.1007/s41324-017-0155-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-10-5801-1_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100553707", 
          "https://doi.org/10.1007/978-981-10-5801-1_29"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Hydrocarbon is a powerful contributor to development. The present study makes an attempt to use remote sensing data coupled with geophysical and geological data that has been integrated into Arc GIS to delineate favorable zones for hydrocarbon potential in the Masila oil field. Lineaments have been extracted using satellite data and geological data by their surface spectral signatures, whereas the subsurface lineaments have been inferred using geophysical data. Digital image processing of satellite image using ERDAS IMAGINE-14 have been carried out, sequentially using various techniques (Sobal, Laplacian filters and band composite), lineament digitized as layers, layers were converted to raster (grid) format, classified, analyzed, integrated and visualized using Arc GIS. The resulting lineaments obtained from each data, suggests that most of the lineaments are trended in NW\u2013SE which coincides and are in conformity with the existing trend of the study area. The output potential map was classified into five zones of hydrocarbon potentiality, namely very high, high, moderate, low and very low potential zones. The hydrocarbon evaluation results of the present study reveal that 6.9% of the total area falls under very high potential, 14.2% highly potential, 21.3% moderately potential, 25.7% low potential and 31.9% falls under very low potential zones. The zones were verified with oil fields and existing wells in the area which shows a positive correlation. Such studies are significant for hydrocarbon potential resource planning and management. Further, the methodology used for this study can be, replicated in another similar geological setup elsewhere for mapping hydrocarbon potential zones.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41324-018-0220-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1153043", 
        "issn": [
          "2366-3286", 
          "2366-3294"
        ], 
        "name": "Spatial Information Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Delineation of hydrocarbon potential zones in Masila oil field, Yemen", 
    "pagination": "121-135", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4ece734d1a0ef0a72a3c0a8641ba634534adfadf048dcb84f65614b0d6c94f96"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41324-018-0220-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109781045"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41324-018-0220-0", 
      "https://app.dimensions.ai/details/publication/pub.1109781045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41324-018-0220-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41324-018-0220-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41324-018-0220-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41324-018-0220-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41324-018-0220-0'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41324-018-0220-0 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N5797c5e44a6445efa486845acb24458b
4 schema:citation sg:pub.10.1007/978-981-10-5801-1_29
5 sg:pub.10.1007/bf02990737
6 sg:pub.10.1007/bf03030884
7 sg:pub.10.1007/s12517-010-0189-z
8 sg:pub.10.1007/s12517-013-1003-5
9 sg:pub.10.1007/s41324-017-0155-x
10 https://doi.org/10.1016/j.isprsjprs.2011.08.003
11 https://doi.org/10.1016/s0040-1951(99)00011-6
12 https://doi.org/10.1016/s1367-9120(02)00025-1
13 https://doi.org/10.1080/0143116031000102557
14 https://doi.org/10.1080/01431160410001705088
15 https://doi.org/10.1080/014311698214244
16 https://doi.org/10.1080/014311698215621
17 https://doi.org/10.1080/014311699212858
18 https://doi.org/10.1111/j.1747-5457.1990.tb00840.x
19 https://doi.org/10.1144/gsl.sp.1990.050.01.18
20 https://doi.org/10.1155/2013/201757
21 https://doi.org/10.5539/jgg.v2n1p119
22 schema:datePublished 2019-04
23 schema:datePublishedReg 2019-04-01
24 schema:description Hydrocarbon is a powerful contributor to development. The present study makes an attempt to use remote sensing data coupled with geophysical and geological data that has been integrated into Arc GIS to delineate favorable zones for hydrocarbon potential in the Masila oil field. Lineaments have been extracted using satellite data and geological data by their surface spectral signatures, whereas the subsurface lineaments have been inferred using geophysical data. Digital image processing of satellite image using ERDAS IMAGINE-14 have been carried out, sequentially using various techniques (Sobal, Laplacian filters and band composite), lineament digitized as layers, layers were converted to raster (grid) format, classified, analyzed, integrated and visualized using Arc GIS. The resulting lineaments obtained from each data, suggests that most of the lineaments are trended in NW–SE which coincides and are in conformity with the existing trend of the study area. The output potential map was classified into five zones of hydrocarbon potentiality, namely very high, high, moderate, low and very low potential zones. The hydrocarbon evaluation results of the present study reveal that 6.9% of the total area falls under very high potential, 14.2% highly potential, 21.3% moderately potential, 25.7% low potential and 31.9% falls under very low potential zones. The zones were verified with oil fields and existing wells in the area which shows a positive correlation. Such studies are significant for hydrocarbon potential resource planning and management. Further, the methodology used for this study can be, replicated in another similar geological setup elsewhere for mapping hydrocarbon potential zones.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N807df46b48164746a50da58a6995845b
29 Na83f9964e9cf4c5887b0cf214f8df0c6
30 sg:journal.1153043
31 schema:name Delineation of hydrocarbon potential zones in Masila oil field, Yemen
32 schema:pagination 121-135
33 schema:productId N0383bab0ccf141cfbd135654fe5066e8
34 N7f27715057e449e386e263f40d242370
35 Neab6d00ab54f4aeea08b622aec5ffb8f
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109781045
37 https://doi.org/10.1007/s41324-018-0220-0
38 schema:sdDatePublished 2019-04-11T13:35
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N694b66362a05492481864bcc67ce550f
41 schema:url https://link.springer.com/10.1007%2Fs41324-018-0220-0
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0383bab0ccf141cfbd135654fe5066e8 schema:name readcube_id
46 schema:value 4ece734d1a0ef0a72a3c0a8641ba634534adfadf048dcb84f65614b0d6c94f96
47 rdf:type schema:PropertyValue
48 N5797c5e44a6445efa486845acb24458b rdf:first sg:person.015315031604.20
49 rdf:rest N62e6b93fe66644d1bf91b06f0f5b4db6
50 N62e6b93fe66644d1bf91b06f0f5b4db6 rdf:first sg:person.014117462413.53
51 rdf:rest Nd02c9afb33ad44ca90ba978c1e5615b5
52 N694b66362a05492481864bcc67ce550f schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N7f27715057e449e386e263f40d242370 schema:name doi
55 schema:value 10.1007/s41324-018-0220-0
56 rdf:type schema:PropertyValue
57 N807df46b48164746a50da58a6995845b schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 Na83f9964e9cf4c5887b0cf214f8df0c6 schema:volumeNumber 27
60 rdf:type schema:PublicationVolume
61 Nd02c9afb33ad44ca90ba978c1e5615b5 rdf:first sg:person.011462772624.63
62 rdf:rest rdf:nil
63 Neab6d00ab54f4aeea08b622aec5ffb8f schema:name dimensions_id
64 schema:value pub.1109781045
65 rdf:type schema:PropertyValue
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
70 schema:name Geomatic Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1153043 schema:issn 2366-3286
73 2366-3294
74 schema:name Spatial Information Research
75 rdf:type schema:Periodical
76 sg:person.011462772624.63 schema:affiliation https://www.grid.ac/institutes/grid.411125.2
77 schema:familyName Mohammed
78 schema:givenName Arafat Mohammed Bin
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462772624.63
80 rdf:type schema:Person
81 sg:person.014117462413.53 schema:affiliation https://www.grid.ac/institutes/grid.411340.3
82 schema:familyName Javed
83 schema:givenName Akram
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014117462413.53
85 rdf:type schema:Person
86 sg:person.015315031604.20 schema:affiliation https://www.grid.ac/institutes/grid.411340.3
87 schema:familyName Alshayef
88 schema:givenName Mohammed Sultan
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015315031604.20
90 rdf:type schema:Person
91 sg:pub.10.1007/978-981-10-5801-1_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100553707
92 https://doi.org/10.1007/978-981-10-5801-1_29
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02990737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051108975
95 https://doi.org/10.1007/bf02990737
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf03030884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030049131
98 https://doi.org/10.1007/bf03030884
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s12517-010-0189-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011865044
101 https://doi.org/10.1007/s12517-010-0189-z
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s12517-013-1003-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002052765
104 https://doi.org/10.1007/s12517-013-1003-5
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s41324-017-0155-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1093090178
107 https://doi.org/10.1007/s41324-017-0155-x
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.isprsjprs.2011.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021534700
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0040-1951(99)00011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025698975
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s1367-9120(02)00025-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000198870
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/0143116031000102557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058294311
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/01431160410001705088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029137742
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1080/014311698214244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003982305
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/014311698215621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038101728
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1080/014311699212858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016714229
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1747-5457.1990.tb00840.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037739612
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1144/gsl.sp.1990.050.01.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035771799
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1155/2013/201757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018172401
130 rdf:type schema:CreativeWork
131 https://doi.org/10.5539/jgg.v2n1p119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072962181
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.411125.2 schema:alternateName University of Aden
134 schema:name Department of Oil and Gas, Aden University, Shabwah, Yemen
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.411340.3 schema:alternateName Aligarh Muslim University
137 schema:name Department of Geology, Aligarh Muslim University, Aligarh, UP, India
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...